LARVICIDAL ACTIVITY AGAINST AEDES AEGYPTI AND ANTIOXIDANT, CYTOTOXIC AND MICROBIOLOGICAL EVALUATION OF THE CRUDE ETHANOLIC EXTRACT OF POGOSTEMON CABLIN BENTH

Authors

  • Lizandra Lima Santos
  • Rosany Lopes Martins
  • Heden Robson Monteiro Souza
  • Janaina Corrêa dos Santos
  • Cristine Barbosa Malafaia
  • Cleidjane Gomes Faustino
  • Fernando Antônio de Medeiros
  • Ana Luzia Ferreira Farias
  • Letícia Gomes de Oliveira
  • Edmilson dos Santos Moraes
  • Camila Lima dos Santos
  • Sheylla Susan Moreira da Silva de Almeida

DOI:

https://doi.org/10.56238/bocav25n74-016

Keywords:

Biocide, Patchouli, Lamiaceae, Vector Control, Oriza

Abstract

The present work aimed to evaluate the larvicidal, antioxidant, microbiological and cytotoxicity activity of the crude ethanolic extract of Pogostemon cablin (Blanco) Benth leaves. The chemical characterization was performed through staining and staining reactions for the detection of secondary metabolite classes. The larvicidal activity against Aedes aegypti was carried out according to the protocol of the World Health Organization. The antioxidant activity was evaluated by the sequestering ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH). As for the microbiological evaluation, the microplate dilution technique was used against three bacteria, according to the protocol of the Clinical and Laboratory Standards Institute. P. cablin presented as classes of secondary metabolites: steroids and triterpenoids, depsides and depsidones, which in synergy with the other substances potentiated the larvicidal action of the species with an LC50 of 63.91 μg.mL-1 in 24 h. There was no antioxidant activity at the tested concentrations, however, it showed inhibition of bacterial growth against E. coli with MIC of 31.25 μg.mL-1. The extract showed moderate toxic action with LC50 of 257.93 μg.mL-1. Therefore, the P. cablin species showed significant larvicidal potential, with bacteriostatic action, the absence of antioxidant action and moderate toxicity.

References

1. Dennis, E.J.; Vosshall, L.B., 2018. DEET feet: Aedes aegypti mosquitoes use their tarsi to sense DEET on contact. BioRxiv. 1-14. http://dx.doi.org/10.1101/360222 DOI: https://doi.org/10.1101/360222

2. Legeay, S.; Clere, N.; Apaire-Marchais, V.; Faure, S., 2018; Lapied, B.Unusual modes of action of the repellent DEET in insects highlight some human side effects. European Journal of Pharmacology. 825, 92-98. https://doi.org/10.1016/j.ejphar.2018.02.033 DOI: https://doi.org/10.1016/j.ejphar.2018.02.033

3. Leageay, S. et al., 2016. The insect repellent N,N-diethyl-m-toluamide (DEET) induces angiogenesisvia allosteric modulation of the M3 muscarinic receptor in endothelial cells. Scientific Reports. 6, 1-13. DOI: 10.1038/srep28546 DOI: https://doi.org/10.1038/srep28546

4. Marques, A.M.; Kaplan, M.A.C., 2015. Metabolitos activos del género Piper contra Aedes aegypti: fuentes alternativas naturales para el control de vectores de dengue. Universitas Scientiarum. 20, 61-82. doi:10.11144/Javeriana.SC20-1.amgp DOI: https://doi.org/10.11144/Javeriana.SC20-1.amgp

5. Galm, U.; Sparks, T.C., 2016. Natural product derived insecticides: discovery and development of spinetoram. Journal of Industrial Microbiology & Biotechnology. 43, 185-193. DOI 10.1007/s10295-015-1710-x DOI: https://doi.org/10.1007/s10295-015-1710-x

6. Bekele, D., 2018. Review on insecticidal and repellent activity of plant products for malaria mosquito control. Biomedical Research and Reviews. 2, 1-7. doi:10.15761/BRR.1000114 DOI: https://doi.org/10.15761/BRR.1000114

7. Zhu, F.; Lavine, L.; O´Neal, S.; Lavine, M.; Foss, C.; Walsh, D., 2016. Insecticide Resistance and Management Strategies in Urban Ecosystems. Insects. 2, 1-26. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808782/ DOI: https://doi.org/10.3390/insects7010002

8. Kraemer, M.U.G. et al., 2015. The global compendium of Aedes aegypti and Ae. albopictus occurrence. Scientific Data. 2, 1-8. DOI: 10.1038/sdata.2015.35 DOI: https://doi.org/10.1038/sdata.2015.35

9. Liu, Y. et al., 2017. Evolutionary enhancement of Zika virus infectivity in Aedes aegypti mosquitoes. Nature. 545, 482-498. doi:10.1038/nature22365 DOI: https://doi.org/10.1038/nature22365

10. Drake, L.L., 2015. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, Aedes aegypti. Scientific Reports. 5, 1-7. DOI:10.1038/srep07795 DOI: https://doi.org/10.1038/srep07795

11. Motta, S.; Monti, M., 2015. Insect Repellents. European Handbook of Dermatological Treatments. 1473–1479. doi:10.1007/978-3-662-45139-7_144 DOI: https://doi.org/10.1007/978-3-662-45139-7_144

12. Vasantha-Srinivasan, P. et al., 2018. Toxicological effects of chemical constituents from Piper against the environmental burden Aedes aegypti Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. 25, 10434-10446. Doi:10.1007/s11356-017-9714-x DOI: https://doi.org/10.1007/s11356-017-9714-x

13. Ramos, R.S. et al., 2016. Chemical Study, antioxidant analysis and evaluation of the larvicidal potential against Aedes aegypti larvae of essential oil of Ocimum basilicum Linn. European Journal of Medicinal Plants. 11, 1-12. DOI: 10.9734/EJMP/2016/18230 DOI: https://doi.org/10.9734/EJMP/2016/18230

14. Chakrapani, P. et al., 2013. Phytochemical, pharmacological importance of Patchouli (Pogostemon cablin (Blanco) Benth) an aromatic medicinal plant. Int. J. Pharm. Sci. Rev. Res. 21, 7–15. http://globalresearchonline.net/journalcontents/v21-2/02.pdf

15. Liu, X.R. et al., 2009. Study on antimicrobial activities of extracts from Pogestemon cablin (Blanco) Benth. Food Sci. Technol. 24, 220–227. http://en.cnki.com.cn/Article_en/CJFDTotal-SSPJ200905066.htm

16. Dongare, P. et al., 2014. A Review on Pogostemon patchouli. Res. J. Pharmacognosy & Phytochem. 691, 41–47. https://search.proquest.com/openview/ef09ede1077a6fca8e287406f22fd5ad/1?pq-origsite=gscholar&cbl=1096443

17. Beek, T.A.V.; Joulain, D., 2018. The essential oil of patchouli, Pogostemon cablin: A review. Flavour Fragr J. 33, 6–51. https://doi.org/10.1002/ffj.3418 DOI: https://doi.org/10.1002/ffj.3418

18. Ramos, R.S. et al., 2014. Preliminary Study of the Extract of the Barks of Licania macrophylla Benth: Phytochemicals and Toxicological Aspects. Biota Amazônia. 94-99. http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n1p94-99 DOI: https://doi.org/10.18561/2179-5746/biotaamazonia.v4n1p94-99

19. Barbosa, W. L. R. et al., 2004. Manual para Análise Fitoquímica e Cromatográfica de Extratos Vegetais. Revista Científica da UFPA. 4, 1-19.

20. Amorim, E.L.C., 2008. A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. Functional Ecosystems and Communities. 2, 88-94. https://www.researchgate.net/profile/Tadeu_Sobrinho/publication/260191188

21. World Health Organization, 2005. Guidelines for laboratory and field testing of mosquito larvicides. Switzerland: Geneva, p. 1-39.

22. Chen, Z. et al., 2013. EC50 estimation of antioxidant activity in DPPH assay using several statistical programs. Foof chemistry. 138, p.414-420. https://doi.org/10.1016/j.foodchem.2012.11.001 DOI: https://doi.org/10.1016/j.foodchem.2012.11.001

23. Lopez-Lutz, D. et al., 2008. Screening of chemical composition, antimicrobial and antioxidant activities of Artemisia essential oil. Phytochemistry. 69, 1732-1738. https://doi.org/10.1016/j.phytochem.2008.02.014 DOI: https://doi.org/10.1016/j.phytochem.2008.02.014

24. Souza, C.R.F.et al., 2009. Antioxidant activity and physical-chemical properties of spray and spouted bed dried extracts of Bauhinia forficata. Braz. J. Pharm. Sci. 45, 209-218. http://dx.doi.org/10.1590/S1984-82502009000200004 DOI: https://doi.org/10.1590/S1984-82502009000200004

25. Clinical and Laboratory Standards Institute, 2018. Methods for Dilution Antimicrobial Susceptibily Tests for Bacteria that Grow Aerobically, 11 th ed. Clinical and Laboratory Standards: Pennsaylvania.

26. Araújo, M.G.F. et al., 2010. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant Solanum lycocarpum. Journal of Basic and Applied Pharmaceutical Sciences. 31, 205-209. https://www.researchgate.net/publication/49599620

27. Milhem, M.M. et al., 2008. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (Artemia salina). J. Appl. Oral Sci. 18, 297-301. http://www.scielo.br/pdf/jaos/v16n4/13.pdf DOI: https://doi.org/10.1590/S1678-77572008000400013

28. Srinivasulu, N. et al., 2016. Screening, Determination of Phytoconstituents And Antimicrobial Activity of Different Solvent Extracts of Different Parts of Achyranthes Aspera on Human Pathogenic Bacteria. Indo American Journal of Pharmaceutical Research. 6, 1-11. https://www.researchgate.net/publication/305494996

29. Iqbal, E. et al., 2015. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of Goniothalamus velutinus (Airy Shaw) from Brunei Darussalam. Journal of King Saud University Science. 27, 224-232. https://doi.org/10.1016/j.jksus.2015.02.003 DOI: https://doi.org/10.1016/j.jksus.2015.02.003

30. Santana, H.T. et al., 2015. Essential oils of leaves of Piper species display larvicidal activity against the dengue vector, Aedes aegypti (Diptera: Culicidae). Rev. Bras. Pl. Med. 17, 105-111. http://dx.doi.org/10.1590/1983-084X/13_052 DOI: https://doi.org/10.1590/1983-084X/13_052

31. Nair, S.K.P. et al., 2016. Preliminary phytochemical screening of different solvent extracts of leaves of Echeveria elegans Rose, an endangered Mexican succulent herb. Journal of Global Biosciences. 5, 3429-3432. https://www.mutagens.co.in/jgb/vol.05/1/050107.pdf

32. Hussein, R.A.; El-Anssary, A.A., 2018. Plants Secondary Metabolites: The key drivers of the pharmacological actions of medicinal plants. Herbal medicine. 11-29. doi:10.5772/intechopen.76139 DOI: https://doi.org/10.5772/intechopen.76139

33. Shahidi, F.; Yeo, J., 2018. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. Molecular Sciences. 19, 1-16. https://doi.org/10.3390/ijms19061573 DOI: https://doi.org/10.3390/ijms19061573

34. Elnour, A.A.M. et al., 2018. Challenges of Extraction Techniques of Natural Antioxidants and Their Potential Applications Opportunities as Anti-Cancer Agents. Health Sci J. 12, 1-25. 10.21767/1791-809X.1000596 DOI: https://doi.org/10.21767/1791-809X.1000596

35. Liu, X.C. et al., 2015. Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. Pest. Manag. Sci. 71, 1582-1586. https://doi.org/10.1002/ps.3964 DOI: https://doi.org/10.1002/ps.3964

36. Missah, B. Larvicical and anti-plasmodial constituents of Carapa procera DC. (meliaceae) and hyptis suaveolens L. Poit (lamiaceae). MPhil Pharmacognosy’s, Thesis, Faculty of Pharmacy and Pharmaceutical Sciences, Kumasi, 2014.

37. Boonyuan, W. et al., 2016. Excito-Repellent Responses between Culex quinquefasciatus Permethrin Susceptible and Resistant Mosquitoes. Journal of Insect Behavior. 29, 415-431. doi: https://10.1007/s10905-016-9570-4 DOI: https://doi.org/10.1007/s10905-016-9570-4

38. Cheng, S.S. et al., 2003. Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresource Technology. 89, 99-102. https://doi.org/10.1016/S0960-8524(03)00008-7 DOI: https://doi.org/10.1016/S0960-8524(03)00008-7

39. Kusuma, H.S. Mahfud, M., 2017. Microwave-assisted Hydrodistillation for Extraction of Essential Oil from Patchouli (Pogostemon cablin) Leaves. Period. Polytech. Chem. 61, 82-92. https://doi.org/10.3311/PPch.8676 DOI: https://doi.org/10.3311/PPch.8676

40. Murcia-Meseguer, A. et al., 2018. Insecticidal toxicity of thirteen commercial plant essential oils against Spodoptera exigua (Lepidoptera: Noctuidae). Phytoparasitica. 46, 233–245. https://doi.org/10.1007/s12600-018-0655-9 DOI: https://doi.org/10.1007/s12600-018-0655-9

41. Silva-filho, S.E. et al., 2016. Effect of patchouli (Pogostemon cablin) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. Biomed. Pharmacother. 1-8. https://doi.org/10.1016/j.biopha.2016.10.084 DOI: https://doi.org/10.1016/j.biopha.2016.10.084

42. Albuquerque, E.L.D. et al., 2013. Insecticidal and repellence activity of the essential oil of Pogostemon cablin against urban ants species. Acta Tropica. 127, 181–186. https://doi.org/10.1016/j.actatropica.2013.04.011 DOI: https://doi.org/10.1016/j.actatropica.2013.04.011

43. Tohidi, B.; Rahimmalek, M. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food chemistry. 220, 153-161. https://doi.org/10.1016/j.foodchem.2016.09.203 DOI: https://doi.org/10.1016/j.foodchem.2016.09.203

44. Maqsood, S. et al., 2014. Phenolic Compounds and Plant Phenolic Extracts as Natural Antioxidants in Prevention of Lipid Oxidation in Seafood: A Detailed Review. Institute of food Technologists. 13, 1125-1140. https://doi.org/10.1111/1541-4337.12106 DOI: https://doi.org/10.1111/1541-4337.12106

45. Fair, R.J.; Tor, Y., 2014. Antibiotics and Bacterial Resistance in the 21st Century. Perspect Medicin Chem. 6, 25-64. https:// 10.4137/PMC.S14459 DOI: https://doi.org/10.4137/PMC.S14459

46. Nazzaro, F. et al., 2013. Effect of Essential Oils on Pathogenic Bacteria. Pharmacelticals. 6, 1451-1474. https://doi.org/10.3390/ph6121451 DOI: https://doi.org/10.3390/ph6121451

47. Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. Inter. Jour. Food. 94, 223-253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022 DOI: https://doi.org/10.1016/j.ijfoodmicro.2004.03.022

48. Liu, X. et al., 2009. Study on antimicrobial activities of extracts from Pogostemon cablin (Blanco) Benth. Food Science and Technology. 5, 1-8. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SSPJ200905066.htm

49. Pereira, E.J.P. et al., 2018. Chemical Composition, cytotoxicity and larvicidal activity against Aedes aegypti of essential oils from Vitex gardineriana Schauer. Bol. Latinoam Caribe Plant. Med. Aromat. 17, 302-209. http://revistas.usach.cl/ojs/index.php/blacpma/article/view/3501

50. Swamy, M.K.; Sinniah, U.R.A., 2015. Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of Pogostemon cablin Benth.: An Aromatic Medicinal Plant of Industrial Importance. Molecules. 20, 8521-8547. https://doi.org/10.3390/molecules20058521 DOI: https://doi.org/10.3390/molecules20058521

Downloads

Published

2026-01-08

Issue

Section

Articles

How to Cite

LARVICIDAL ACTIVITY AGAINST AEDES AEGYPTI AND ANTIOXIDANT, CYTOTOXIC AND MICROBIOLOGICAL EVALUATION OF THE CRUDE ETHANOLIC EXTRACT OF POGOSTEMON CABLIN BENTH. Conjuncture Bulletin (BOCA), Boa Vista, v. 25, n. 74, p. e8091, 2026. DOI: 10.56238/bocav25n74-016. Disponível em: https://revistaboletimconjuntura.com.br/boca/article/view/8091. Acesso em: 29 jan. 2026.