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RESUMO 

As incertezas nos parâmetros de um manipulador robótico podem afetar, de forma significativa, o 

desempenho do manipulador, ocasionando erros de regime e de seguimento de trajetória. 

Controladores adaptativos apresentam-se como uma boa alternativa para esses sistemas, pois possuem 

como principal característica a capacidade de aprenderem online usando estimação de parâmetros em 

tempo real. No entanto, controladores adaptativos não são geralmente projetados com a qualidade de 

serem ótimos com respeito aos critérios de desempenho especificados e, desta forma, não são viáveis 

para aplicações onde o uso ótimo de recursos é altamente desejável, como por exemplo em robôs 

humanoides e robôs de serviços. Este artigo apresenta o projeto e investigação de desempenho de um 

controlador que combina características de controle adaptativo e controle ótimo para um manipulador 

robótico. Especificamente, o esquema de controle proposto é implementado como uma estrutura ator-

crítico, a qual está inserida no contexto de aprendizado por reforço, caracterizando este projeto como 

uma abordagem independente do modelo da planta. Em contraste a outros sistemas ator-críticos em 

que são usadas duas redes neurais independentes, uma para aproximar a função valor, e a outra para 

aprender ações de controle, neste esquema, se define uma única rede neural, o que reduz o número de 

parâmetros a serem estimados. Os resultados de simulação demonstram o desempenho desejado do 

controlador proposto que atua em um manipulador de juntas rotativas com dois graus de liberdade. 

 

Palavras-chave: Manipulador Robótico. Controle Adaptativo. Controle Ótimo. Aprendizado por 

Reforço. Esquema Ator-Crítico. 
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ABSTRACT 

The uncertainties in the parameters of a robot manipulator can significantly affect the robot 

performance, causing steady-state and trajectory following errors. Adaptive controllers are a good 

alternative for these systems, since their main feature is the capability to learn online using real-time 

parameter estimation. Nevertheless, adaptive controllers are not usually designed to be optimal to a 

prescribed performance index, and thus, are not suitable to applications in which optimal use of 

resources is highly desirable, for instance humanoid and service robots. This paper presents the design 

and performance study of a controller that combine features of adaptive control and optimal control 

applied to a robot manipulator. Specifically, the proposed control scheme is implemented as an actor-

critic structure, which is in the reinforcement learning context, characterizing this design as a model-

free approach. In contrast to others actor-critic systems in which two independent neural networks are 

used, one for approximating the value function and another for learning the control actions, in this 

scheme, a single neural network is defined, reducing the number of parameters to be estimated. The 

simulation results validate the desired performance of the proposed controller applied in a two-link 

robot manipulator with revolute joints. 

 

Keywords: Robot Manipulator. Adaptive Control. Optimal Control. Reinforcement Learning. Actor-

Critic Scheme. 

 

RESUMEN 

Las incertidumbres en los parámetros de un manipulador robótico pueden afectar significativamente 

al rendimiento del manipulador, provocando errores de régimen y de seguimiento de la trayectoria. 

Los controladores adaptativos se presentan como una buena alternativa para estos sistemas, ya que su 

principal característica es la capacidad de aprender en línea utilizando la estimación de parámetros en 

tiempo real. Sin embargo, los controladores adaptativos no suelen diseñarse con la calidad de ser 

óptimos con respecto a los criterios de rendimiento especificados y, por lo tanto, no son viables para 

aplicaciones en las que es muy deseable el uso óptimo de los recursos, como por ejemplo en robots 

humanoides y robots de servicio. Este artículo presenta el diseño y la investigación del rendimiento de 

un controlador que combina características de control adaptativo y control óptimo para un manipulador 

robótico. En concreto, el esquema de control propuesto se implementa como una estructura actor-

crítico, que se inserta en el contexto del aprendizaje por refuerzo, lo que caracteriza a este diseño como 

un enfoque independiente del modelo de la planta. A diferencia de otros sistemas actor-crítico en los 

que se utilizan dos redes neuronales independientes, una para aproximar la función de valor y otra para 

aprender acciones de control, en este esquema se define una única red neuronal, lo que reduce el 

número de parámetros que deben estimarse. Los resultados de la simulación demuestran el rendimiento 

deseado del controlador propuesto, que actúa en un manipulador de juntas rotativas con dos grados de 

libertad. 

 

Palabras clave: Manipulador Robótico. Control Adaptativo. Control Óptimo. Aprendizaje por 

Refuerzo. Esquema Actor-Crítico. 
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1 INTRODUÇÃO 

O desenvolvimento de estratégias de controle para manipuladores robóticos apresenta 

dificuldades decorrentes das próprias características do sistema, isto é, um robô articulador é um 

sistema dinâmico multivariável, com fortes não-linearidades devidas aos acoplamentos de suas juntas 

e movimentos, além de apresentar parâmetros incertos ou que variam no tempo, tais como a massa e 

inércia dos elos, atritos ou folgas nas engrenagens das juntas, variações nas cargas de trabalho, 

localização do centro de massa (que pode mudar quando o robô estiver com carga), entre outras (Fateh; 

Fateh, 2019). Estas imprecisões paramétricas resultam em perdas de exatidão e velocidade nos 

movimentos do manipulador, que em determinadas aplicações é altamente indesejável. Já a dinâmica 

não-linear pode levar o sistema à instabilidade em determinados pontos de operação (Craig, 2021). 

Controladores convencionais de realimentação, tal como o PID (Proporcional-Integral-

Derivativo), são vastamente utilizados na indústria por serem simples, fáceis de implementar e por 

apresentarem bom desempenho em diversas aplicações (Borase et al., 2021). Entretanto, este esquema 

de controle, por ser um tipo de controle com ganhos fixos, torna-se insuficiente quando aplicado a 

sistemas com não linearidades e/ou incertezas (parâmetros imprecisos, dinâmicas não-modeladas de 

alta frequência e perturbações), ou seja, sistemas que apresentam pontos de operação variáveis 

(Konstantopoulos; Baldivieso-Monasterios, 2020). 

Dentre os controladores clássicos aplicados a manipuladores existem aqueles baseados em 

modelo (cinemático e/ou dinâmico para controle de posição, velocidade e força). Porém, estas 

abordagens necessitam do conhecimento completo das equações que descrevem o comportamento do 

sistema, sendo elas bastante complexas e com parâmetros que muitas vezes são incertos. A 

complexidade do modelo cresce também com o aumento de juntas e elos do manipulador, aumentando 

o custo computacional para solucionar estas equações (Moosavi; Zafar; Sanfilippo, 2022).  

A teoria de controle adaptativo fornece meios para desenvolver soluções para sistemas 

dinâmicos que demandam controladores mais complexos. Esta abordagem permite compensar, de 

forma online¸ as variações e incertezas paramétricas do sistema garantindo que os critérios de 

desempenho desejados sejam alcançados (Sun et al., 2020). Tradicionalmente, os métodos de controle 

adaptativo podem ser divididos em duas abordagens: controle indireto e controle direto (Qi; Tao; Jiang, 

2019). Em controle indireto, a estimação dos parâmetros do sistema precede a geração de uma entrada 

de controle. Em controle direto, os parâmetros do controlador são diretamente ajustados sem a 

necessidade das equações que regem o comportamento do sistema. 

Na literatura de Controle Adaptativo encontram-se diversos estudos e métodos aplicados ao 

controle de trajetória de manipuladores robóticos. Dubowsky e Desforges (1979) são os pioneiros em 

empregar técnicas de controle adaptativo em robôs articulados. A abordagem usada por estes 

pesquisadores foi o Sistema Adaptativo por Modelo de Referência (Model Reference Adaptive System 
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- MRAS). Resultados práticos também mostraram os benefícios das abordagens baseadas nas técnicas 

self-tuning e backstepping em relação ao controle convencional com ganhos fixos (Clegg; Dunnigan; 

Lane, 2001) (Sasaki et al., 2009) (Hu; Xu; Zhang, 2012). Abordagens híbridas também foram 

exploradas (Maliotis, 1991) (Al-Olimat; Ghandakly, 2002) (Chen, 2005) (Alqaudi et al., 2016) (Zhang; 

Wei, 2017). Em (Wu; Yan; Cai, 2019) (Fateh; Fateh, 2019) (Yilmaz et al., 2022) (Freire; Rossomando; 

Soria, 2018) são propostos projetos de controle adaptativo baseados em técnicas de inteligência 

artificial, tais como redes neurais e lógica fuzzy, que são capazes de compensar as incertezas do modelo 

de um robô manipulador. 

Apesar das técnicas de controle adaptativo terem alcançado sucesso em muitas aplicações, um 

aspecto que deve ser observado é que os projetos de controladores resultantes desses métodos, em 

geral, têm sido estruturados sem considerar a otimização da ação de controle e, desta forma, não são 

viáveis para aplicações onde o uso de estratégias ótimas de controle é requerida, como por exemplo 

em robôs humanoides/robôs de serviços (Khan et al., 2012). Nesse caso, uma abordagem conjunta das 

técnicas de controle adaptativo e controle ótimo é desejada. Controle ótimo consiste basicamente em 

determinar uma lei de controle de maneira a minimizar um critério de desempenho desejado. No 

contexto da robótica, critérios de desempenho podem envolver a energia ou força para a execução do 

movimento, ao mesmo tempo que devem ser satisfeitas as restrições físicas do sistema, tais como 

limites dos atuadores ou das juntas.  

Muitos esforços na teoria de controle de sistemas estão atualmente concentrados em uma área 

do aprendizado de máquina baseada nos estudos do comportamento animal e psicologia cognitiva, 

chamada Aprendizado por Reforço (Reinforcement Learning - RL), que visa incorporar características 

de sistemas biológicos para o tratamento de sistemas com incertezas, introduzindo diversos termos, 

tais como adaptação, aprendizado, reconhecimento de padrões e auto-organização (Guo; Yan; Cui, 

2020) (Yaghmaie; Gustafsson; Ljung, 2023) (Chen; Dai; Dong, 2024a) (Chen; Dong; Dai, 2024b) 

(Zhao et al., 2025) (Su et al., 2025) (Wang et al., 2025). O tema central na pesquisa de RL é o projeto 

de algoritmos que aprendem políticas de controle ótimas através do conhecimento apenas de amostras 

de transição dos estados ou trajetórias, que são coletadas antecipadamente ou pela interação em tempo 

real com o sistema.  

Métodos Ator-Crítico constituem uma classe de técnicas de aprendizado por reforço que 

consistem essencialmente de duas estruturas paramétricas independentes (por exemplo, redes neurais), 

uma para representar a política de controle, denominada Ator, e a outra estrutura de rede é para 

representar a função valor, chamada Crítico (Sutton; Barto, 2018). O ator é um agente que interage 

com o ambiente, ou seja, o ator é o controlador que estabelece ações de controle, enquanto o crítico 

avalia o efeito das ações de controle e fornece diretrizes sobre como melhorar a lei de controle. 
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Aprendizado por reforço pode ser visto em (Kiumarsi et al, 2018) na perspectiva de um campo 

de pesquisa promissor para o projeto de uma classe de controladores adaptativos com estrutura ator-

crítico que aprendem online soluções de controle ótimo sem fazer uso do modelo da dinâmica do 

sistema (planta). Esta abordagem resolve a equação de otimização (equação de Hamilton-Jacobi-

Bellman - HJB) em uma maneira "para frente no tempo" usando métodos de diferenças temporais, 

aproximação de funções e melhorias de políticas. Tais controladores são inspirados em estruturas 

neurais biológicas que fornecem capacidades para lidar de forma eficaz com o grau de complexidade 

de sistemas não-lineares, incertos e parcialmente observáveis. Em (Kiumarsi et al, 2018), são 

apresentadas as principais ideias e algoritmos de aprendizado por reforço bem como suas aplicações 

em controle ótimo de sistemas dinâmicos.  

 

1.1 OBJETIVOS 

O presente artigo tem por objetivo avaliar o potencial de um algoritmo de aprendizado por 

reforço para resolver problemas de controle ótimo online da trajetória de um manipulador robótico 

com espaço de estado contínuo (espaço das juntas). Em contraste com a maioria dos algoritmos ator-

crítico reportados na literatura (vide Seção 2), em que se utilizam duas redes neurais, uma para 

aproximar a função valor, e a outra para aprender ações de controle, o algoritmo proposto neste trabalho 

emprega uma arquitetura ator-crítico onde uma única rede neural é usada para aproximar a solução da 

equação HJB, o que reduz significativamente o número de parâmetros a serem estimados. 

Especificamente, neste esquema, ações de controle são calculadas de maneira exata por meio de um 

esquema de política gulosa com respeito à função valor, ao invés de se usar um aproximador 

paramétrico para representar a política de controle. Experimentos realizados em um braço robótico 

UR10 do simulador V-REP mostram que tal algoritmo aprende com sucesso a lei de controle ótimo 

para as tarefas de regulação e rastreamento para diferentes sinais de referência. 

 

2 TRABALHOS CORRELATOS 

Contribuições anteriores importantes para o projeto de controle fundamentado em RL incluem 

os trabalhos de Peters e Schaal (2008a) (2008b), que investigaram diversos métodos de aprendizado 

por reforço para robôs humanoides. Esses métodos foram classificados em três categorias: política 

gulosa, gradiente de política “vanilla” e gradiente de política natural. A abordagem Ator-Crítico 

natural, que explora a formulação do gradiente de política natural, foi destacada pelos autores por 

apresentar melhores propriedades de convergência. Uma extensão desse estudo é mostrada em 

(Bhatnagar et al., 2009).  

Já (Shah; Gopal, 2009) apresentaram uma abordagem de controle baseada em Aprendizado Q 

para robôs manipuladores em ambientes incertos e forneceram um estudo comparativo de diferentes 
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métodos de aproximação de função, tais como fuzzy, redes neurais, árvore de decisão e máquina de 

vetor de suporte. 

Em (Khan et al., 2011, 2012), os autores enfatizaram aplicações de controladores RL em 

sistemas robóticos e propuseram um esquema de controle adaptativo ótimo fundamentado em 

Aprendizado Q (Q-Learning) e Programação Dinâmica Aproximada. A estratégia foi implementada no 

braço de um robô humanoide (Bristol Elumotion-Robotic-Torso II) considerando um caso sem 

restrições e outro com restrições de movimento.  

Em (Pane; Nageshrao; Babuška, 2016), os autores forneceram validação experimental de um 

compensador baseado em aprendizado Ator-Crítico para melhorar o desempenho de um robô 

manipulador. O método proposto dispensa a necessidade de aprender o modelo do sistema e pode ser 

utilizado em qualquer controlador por realimentação (PID, LQR etc.). A validação do método foi 

demonstrada através de experimentos em um robô manipulador industrial com seis graus de liberdade 

para diferentes tipos de trajetórias de referência. Uma extensão desse trabalho é apresentada em (Pane 

et al., 2019).  

A aplicação de controladores RL em manipuladores robóticos também é mostrada em (Hu; Si, 

2018). Nesse trabalho, uma estratégia de Aprendizado Ator-Crítico com observador de estado via rede 

neural foi implementada para controlar um braço robótico com parâmetros desconhecidos e sujeito a 

zonas mortas desconhecidas.  

Khan et al. (2019) propuseram um controle de complacência adaptativo ótimo para um 

dispositivo robótico de auxílio à locomoção. O esquema de controle sugerido é fundamentado em 

Aprendizado Q e programação dinâmica aproximada. Esse esquema é completamente independente 

de modelo dinâmico e emprega realimentação da posição e velocidade da junta, bem como o torque 

detectado da junta (aplicado pelo usuário durante a caminhada) para controle de complacência. A 

eficiência do controlador é testada em simulação em um modelo de dispositivo robótico de auxílio à 

locomoção. 

Kamboj et al. (2020) apresentaram uma estratégia de controle cinemático ótimo em tempo 

discreto para um manipulador usando a estrutura Ator-Crítico. A metodologia exposta foi aplicada em 

um modelo 3D de um manipulador com seis graus de liberdade em experimentos realizados em um 

software de simulação. Em seguida, implementou-se a estratégia em um robô real do mesmo modelo 

do simulado.  

Em (He et al., 2021), os autores discutiram o projeto de controle e a validação de experimentos 

de um sistema de manipulador flexível de dois elos. Uma estratégia de controle de aprendizado por 

reforço é desenvolvida com base na estrutura ator-crítico para atenuar vibrações enquanto mantém o 

rastreamento da trajetória. 
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Um controlador de rastreamento baseado em Aprendizado Ator-Crítico para um manipulador 

também foi estudado por (Cao et al., 2023). Nesse trabalho, a técnica de modos deslizantes é utilizada 

para que a ação obtida pelo esquema Ator-Crítico garanta a convergência do erro de rastreamento em 

um tempo fixo. Além disso, um compensador antiwindup foi projetado para lidar com os efeitos da 

saturação do atuador da junta.  

Na literatura acima, a maioria dos algoritmos RL ator-crítico são implementados utilizando 

duas redes neurais, uma para aproximar a função valor, e a outra para aprender ações de controle. Para 

reduzir a complexidade computacional associada com métodos ator-críticos, propõe-se, no presente 

artigo, uma arquitetura onde uma única rede neural é usada para aproximar a solução de controle ótimo, 

o que reduz significativamente o número de parâmetros a serem estimados. Especificamente, ações de 

controle são calculadas de maneira exata por meio de um esquema de política gulosa com respeito à 

função valor, ao invés de se usar uma aproximação paramétrica para representar a política de controle. 

  

3 DESCRIÇÃO DO SISTEMA MANIPULADOR ROBÓTICO 

Um manipulador robótico, ou robô articulado, é formado por um conjunto de corpos individuais 

conectados entre si formando uma cadeia cinemática capaz de realizar tarefas através da interação com 

o ambiente (Craig, 2021). As duas partes fundamentais que compõem um robô articulado são os elos, 

ou articulações, e as juntas. Os elos são as estruturas físicas (rígidas ou flexíveis) que compõem o robô. 

Já as juntas são responsáveis por promover o movimento relativo entre as articulações por meio de 

acionadores e são comumente classificadas de acordo com mobilidade que estas viabilizam. Os tipos 

mais comuns encontrados na indústria são as juntas rotacionais e as prismáticas.  

 

Figura 1. Elos e Juntas de um robô articulado. 

 
Fonte: Abbas, 2018. 
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A Figura 1 ilustra uma sequência de elos e juntas de um braço robótico. As extremidades do 

robô articulador são denominadas de base e efetuador. A base fica ligada ao primeiro elo e fixa o 

mecanismo em algum ponto no espaço de tarefas. O efetuador é uma ferramenta conectada ao último 

elo do articulador e é por este ponto que há a interação com o ambiente. O tipo de atuador instalado 

dependerá da tarefa a ser executada. 

 

3.1 EQUAÇÕES DINÂMICAS DE UM MANIPULADOR ROBÓTICO 

A dinâmica dos manipuladores estuda a relação entre as forças aplicadas nos atuadores das 

juntas e o movimento do mecanismo. A formulação de Lagrange permite modelar o comportamento 

dinâmico de um corpo em termos das energias cinéticas e potenciais ao invés de considerar os 

momentos e forças aplicadas individualmente em cada junta. A equação de Lagrange é expressa por 

 

 
𝜏 =

𝑑

𝑑𝑡
( 

𝜕𝐿

𝜕𝑞̇
) −  

𝜕𝐿

𝜕𝑞
 (1) 

   

 𝐿(𝑞̇, 𝑞) = 𝐾(𝑞̇, 𝑞) − 𝑈(𝑞) , (2) 

 

em que 𝐾(⋅) é a energia cinética e 𝑈(⋅) é a energia potencial armazenada no mecanismo. Essa equação 

é escrita em termos das coordenadas generalizadas 𝑞 do articulador e sua derivada 𝑞̇ no tempo. O termo 

𝜏, por sua vez, representa o vetor generalizado de forças, incluindo as forças e os torques aplicados no 

sistema. 

Para um robô manipulador com 𝑛 elos rígidos, a energia cinética pode ser escrita na forma 

 

 
𝐾(𝑞̇, 𝑞) = ∑ 𝑘𝑖

𝑛

𝑖=0

 (3) 

   

 
𝑘𝑖 =

1

2
𝑚𝑖𝑣𝐶𝑖

𝑇 𝑣𝐶𝑖
+

1

2
𝜔𝑖

𝑇
⬚

𝐶𝑖𝐼𝑖𝜔𝑖 , 
(4) 

 

em que 𝑘𝑖 é a energia cinética para o 𝑖-ésimo elo. Para cada elo, tem-se duas componentes, uma 

relacionada a velocidade linear 𝑣𝐶𝑖
, e a outra, a velocidade angular 𝜔𝑖, relativas ao centro de massa da 

respectiva articulação, com 𝑚𝑖 a massa do elo 𝑖, e 𝐼𝑖⬚
𝐶𝑖  é a matriz de inércia.  

A energia potencial pode ser expressa como 
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𝑈(𝑞) = ∑ 𝑢𝑖

𝑛

𝑖=0

 (5) 

   

 𝑢𝑖 = 𝑚𝑖𝑔
𝑇𝑃𝐶𝑖

 (6) 

 

em que 𝑢𝑖 é a energia potencial para o 𝑖-ésimo elo, definida em termos da massa 𝑚𝑖, do vetor de 

gravidade 𝑔 e da localização 𝑃𝐶𝑖
 do centro de massa relativo à base. 

Aplicando-se o lagrangeano 𝐿(∙) na equação (1), pode-se reordenar os termos da expressão 

resultante de modo a obter 

 

 𝜏 = 𝑀(𝑞)𝑞̈ + 𝑁(𝑞, 𝑞̇) + 𝐺(𝑞), (7) 

 

em que 𝑀(𝑞) é a matriz 𝑛 × 𝑛 de massa do manipulador, 𝑁(𝑞, 𝑞̇) é um vetor de dimensão  𝑛 × 1 

relacionado as forças de Coriolis e centrípeta, e 𝐺(𝑞) é um vetor 𝑛 × 1 com os termos que envolvem 

a gravidade.  

Desse modo, o modelo de um manipulador pode ser escrito na forma de Espaço de Estados por 

 

 

4 METODOLOGIA 

No contexto de controle ótimo e aprendizado por reforço, a noção de maximizar recompensas 

futuras ponderadas é modificada para minimizar o custo de controle. Desta forma, o objetivo é 

determinar uma lei de controle ou política de controle ℎ∗(𝑥𝑘,  𝑑𝑘) = 𝑢𝑘
∗  que minimize o índice de 

desempenho (função valor) 

 

 
𝑉(𝑥𝑘, 𝑑𝑘) = ∑ 𝛾𝑖−𝑘

∞

𝑖=𝑘 

𝑟(𝑥𝑖, 𝑢𝑖 , 𝑑𝑖), (9) 

 

onde 𝑥𝑘 ∈ ℝ𝑛 é o vetor de estado,  𝑢𝑘 ∈ ℝ𝑚 é o vetor de entrada de controle, 𝑑𝑘 é o vetor de trajetória 

desejada, 0 < 𝛾 ≤ 1 é o fator de desconto, e 𝑟(⋅) é a função de utilidade que retorna o custo de controle 

em um passo de tempo. Uma função de utilidade razoavelmente geral em problemas de minimização 

de energia é dada por: 

 
[
𝑞̇
𝑞̈

] = [
𝑞̇

−𝑀−1(𝑁 + 𝐺)
]

+ [
0

𝑀−1] 𝜏. 

(8) 
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 𝑟(𝑥𝑖, 𝑢𝑖 , 𝑑𝑖) = 𝑟̃(𝑥𝑖, 𝑑𝑖) + 𝑢𝑖
𝑇𝑅𝑢𝑖, (10) 

 

onde 𝑅 é uma matriz definida positiva. O vetor 𝑑𝑖 pode ser descrito como uma demanda de projeto, 

fazendo com que 𝑟̃(⋅) represente o custo para executar a tarefa desejada, como por exemplo, o custo 

de rastreamento.  

Usando o princípio da otimalidade de Bellman (Vrabie; Vamvoudakis; Lewis, 2013), o índice 

de desempenho ótimo pode ser escrito como 

 

 𝑉∗(𝑥𝑘, 𝑑𝑘) = min
𝑢𝑘

(𝑟(𝑥𝑘 , 𝑢𝑘, 𝑑𝑘) + 𝛾𝑉∗(𝑥𝑘+1, 𝑑𝑘+1)). (11) 

 

Em aprendizado por reforço, uma variante da função valor 𝑉(⋅), chamada função 𝑄 (ou função 

valor ação), é usada. Tal função tem uma aplicação apropriada nos projetos de controle em que o 

modelo da planta não está disponível. A função 𝑄 associada à uma política de controle ℎ é definida 

por 

 

 𝑄ℎ(𝑥𝑘,  𝑢𝑘,  𝑑𝑘) = 𝑟(𝑥𝑘 ,  𝑢𝑘,  𝑑𝑘) + 𝛾𝑉ℎ(𝑥𝑘+1,  𝑑𝑘+1), (12) 

 

e a função 𝑄 ótima satisfaz a seguinte equação 

 

 𝑄∗(𝑥𝑘,  𝑢𝑘,  𝑑𝑘) = 𝑟(𝑥𝑘,  𝑢𝑘,  𝑑𝑘) + 𝛾𝑉∗(𝑥𝑘+1,  𝑑𝑘+1). (13) 

   

Combinando as equações (11) e (13), a equação da otimalidade de Belmann em termos da 

função 𝑄 é dada por 

 

 𝑉∗(𝑥𝑘,  𝑑𝑘) = min
𝑢𝑘

(𝑄∗(𝑥𝑘,  𝑢𝑘, 𝑑𝑘)) (14) 

   

e a política de controle ótima é obtida por 

 

 ℎ∗(𝑥𝑘,  𝑑𝑘) = arg min
𝑢𝑘

𝑄∗(𝑥𝑘, 𝑢𝑘 , 𝑑𝑘). (15) 

   

Supondo 𝑄∗ suficientemente suave (diferenciável), o sinal de controle pode ser obtido como 

solução da equação 
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4.1 ESTRATÉGIA DE APRENDIZADO ONLINE ATOR-CRÍTICO 

O esquema ator-crítico descrito a seguir considera um sistema manipulador com dois graus de 

liberdade, podendo ser estendido para manipuladores com 𝑛 graus de liberdade. A lei de controle é 

sintetizada no problema de rastreamento ótimo da posição das juntas do manipulador. Em particular, 

𝑥𝑘 = [𝑥𝑘1 𝑥𝑘2 𝑥𝑘3 𝑥𝑘4]𝑇 é definido como o vetor de estado no instante de tempo 𝑘, onde 𝑥𝑘1 =

𝑞1 e 𝑥𝑘2 = 𝑞2 são, respectivamente, a posição angular da junta 1 e da junta 2, e 𝑥𝑘3 = 𝑞1̇ e 𝑥𝑘4 = 𝑞2̇ 

são, na ordem devida, a velocidade angular da junta 1 e da junta 2. O sinal de controle, naturalmente, 

é um vetor 2 × 1 onde 𝑢𝑘 = 𝜏 é a força aplicada nas juntas. Para o problema de rastreamento ótimo 

considerado, a função de utilidade reduz-se a 

 

 𝑟(𝑥𝑘,  𝑒𝑘,  𝑢𝑘) = 𝑒𝑘
𝑇𝑄𝑐𝑒𝑘 + (𝑢𝑘+1 − 𝑢𝑘)𝑇𝑆(𝑢𝑘+1 − 𝑢𝑘) + 𝑢𝑘

𝑇𝑅𝑢𝑘 ≡ 𝑟𝑘, (17) 

 

em que 𝑄𝑐 ∈ ℝ4×4, 𝑅 ∈ ℝ2×2 e 𝑆 ∈ ℝ2×2 são matrizes definidas positivas e diagonais.  

No presente estudo, a estrutura paramétrica para aproximar a função 𝑄 assume a forma dada 

por 

 

 𝑄̂𝑖(𝑥𝑘,  𝑢𝑘,  𝑑𝑘,  𝑤𝑖) = 𝑤𝑖
𝑇𝜙(𝑥𝑘,  𝑢𝑘,  𝑑𝑘), (18) 

 

em que 𝑤𝑖 é a 𝑖-ésima estimação do vetor de pesos da rede neural e 𝜙(⋅) é o vetor de funções de 

ativação ou funções de base. Considera-se que o valor desejado para estimação do parâmetro 𝑤𝑖 é dado 

por 

 

 𝛥𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 = 𝑟(𝑥𝑘,  𝑒𝑘,  𝑢𝑘) + 𝛾𝑄̂𝑖(𝑥𝑘+1, 𝑢𝑘+1, 𝑑𝑘+1) (19) 

 

A Figura 2 ilustra a arquitetura da rede neural utilizada para estimar a função 𝑄, em que 𝑚 =

4, 𝑛 = 2 e 𝑝 = 105. As funções 𝜙𝑗, 𝑗 = 1, … , 𝑝, são as componentes do vetor de funções de ativação 

resultantes do produto de Kronecker dado na equação (21). 

O vetor de pesos 𝑤𝑖 é calculado pela minimização, em um sentido dos mínimos quadrados, do 

erro de diferencial temporal, que é definido por 

 

  

 ∂𝑄∗(𝑥𝑘, 𝑢𝑘 , 𝑑𝑘)

∂𝑢𝑘
= 0. 

(16) 
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Figura 2. Arquitetura da rede neural utilizada para estimar a função 𝑄. 

 
Fonte: Elaborado pelos autores. 

 

 𝛿𝑘 = 𝑟𝑘 + 𝛾𝑄̂𝑖(𝑥𝑘+1, 𝑢𝑘+1, 𝑑𝑘+1, 𝑤𝑖) − 𝑄̂𝑖(𝑥𝑘, 𝑢𝑘, 𝑑𝑘, 𝑤𝑖). (20) 

 

O vetor de funções de ativação é construído por polinômios de ordem superior. Por 

simplificação, 𝜙(⋅) será representado utilizando o produto de Kronecker ⊗ com a exclusão dos termos 

redundantes (Vrabie; Vamvoudakis; Lewis, 2013). Esta exclusão é necessária para que os elementos 

que compõem o vetor de funções de base 𝜙(⋅) tornam-se linearmente independentes. O objetivo é 

inserir alguns elementos quadráticos e termos de até quarta ordem dos erros de rastreamento, dos 

estados e dos sinais de controle, de modo que a rede neural possa aprender as não-linearidades do 

manipulador. Portanto, 

 

 𝜙(𝑧𝑘) = 𝑧𝑘 ⊗ 𝑧𝑘 , (21) 

 

em que 

 

 𝑧𝑘 = [𝑢𝑘
𝑇 𝑒𝑘

𝑇 𝑒𝑘1
2 𝑒𝑘2

2 𝑒𝑘3
2 𝑒𝑘4

2 𝑥𝑘1
2 𝑥𝑘2

2 𝑥𝑘3
2 𝑥𝑘4

2 ]𝑇 (22) 

 

de modo que  𝑒𝑘 = [𝑒𝑘1 𝑒𝑘2 𝑒𝑘3 𝑒𝑘4]𝑇 = 𝑥𝑘 − 𝑑𝑘 é o erro de rastreamento. Desta maneira, a 

Rede Neural Artificial (RNA) a ser implementada possui 105 neurônios.  

A função 𝑄̂ toma a forma 

 

 
𝑄̂𝑖(𝑥𝑘, 𝑢𝑘, 𝑑𝑘 , 𝑤𝑖) = 𝑤𝑖,1

𝑇 𝜑1(𝑧𝑘) + 𝑤𝑖,21
𝑇 𝜑2(𝑧𝑘)𝑢𝑘1 + 𝑤𝑖,22

𝑇 𝜑2(𝑧𝑘)𝑢𝑘2 + 𝑤𝑖,31𝑢𝑘1
2 +

𝑤𝑖,32𝑢𝑘2
2 , 

(23) 
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onde 𝜙(𝑧𝑘) = [𝜑1
𝑇(𝑧𝑘) 𝜑2

𝑇(𝑧𝑘)𝑢𝑘1 𝜑2
𝑇(𝑧𝑘)𝑢𝑘2 𝑢𝑘1

2 𝑢𝑘2
2 ]𝑇  é decorrente da equação (21). 

Especificamente, os elementos que compõem 𝜑1(⋅) e 𝜑2(⋅) são independentes de 𝑢𝑘1 e 𝑢𝑘2. 

Aplicando a equação (16) para determinar a política de controle, temos 

 

𝜕𝑄̂𝑖(𝑥𝑘, 𝑢𝑘, 𝑑𝑘, 𝑤𝑖)

𝜕𝑢𝑘1
= 𝑤𝑖,21

𝑇 𝜑2(𝑧𝑘) + 2𝑤𝑖,31𝑢𝑘1 = 0 

 
𝑢𝑘1 = −

1

2𝑤𝑖,31
𝑤𝑖,21

𝑇 𝜑2(𝑧𝑘) (24) 

   

𝜕𝑄̂𝑖(𝑥𝑘, 𝑢𝑘, 𝑑𝑘, 𝑤𝑖)

𝜕𝑢𝑘2
= 𝑤𝑖,22

𝑇 𝜑2(𝑧𝑘) + 2𝑤𝑖,32𝑢𝑘2 = 0 

 
𝑢𝑘2 = −

1

2𝑤𝑖,32
𝑤𝑖,22

𝑇 𝜑2(𝑧𝑘). (25) 

 

Reorganizando na forma matricial, a política de controle pode ser escrita como 

 

 
ℎ𝑖(𝑥𝑘, 𝑑𝑘) = −

1

2
[
𝑤𝑖,31 0

0 𝑤𝑖,32
]

−1

[
𝜑2

𝑇(𝑧𝑘) 𝟎𝟏×𝟏𝟐

𝟎𝟏×𝟏𝟐 𝜑2
𝑇(𝑧𝑘)

] 𝑤𝑖,2, (26) 

 

em que 𝑤𝑖,2 = [𝑤𝑖,21
𝑇 𝑤𝑖,22

𝑇 ]
𝑇
. 

Em aprendizado por reforço, o ator é o agente que gera a política de controle, ou seja, o ator é 

descrito matematicamente pela equação (26). Já o crítico, é descrito pela equação (23). 

 

4.2 ALGORITMO DE APRENDIZADO ONLINE ATOR-CRÍTICO  

Um aspecto relacionado à abordagem ator-crítico é que as estimativas da função 𝑄 de uma dada 

política de controle são atualizadas a cada passo de tempo 𝑘 usando dados observados do sistema 

(estados do manipulador). Para tanto, será utilizado o algoritmo iterativo dos mínimos quadrados 

recursivos (Recursive Least-Squares - RLS) para a estimação do vetor de pesos 𝑤𝑖. A eficiência do 

método RLS no aprendizado online é principalmente devido à sua robustez para lidar com variações 

nos parâmetros de regressão e a rápida convergência (Ferreira; Rêgo; Neto, 2017).  

Portanto, aplicando o algoritmo RLS, a estimativa dos pesos da RNA, a cada passo de tempo 

𝑘, é dada por  

 

 𝑤𝑘+1 = 𝑤𝑘 + 𝐾𝑘𝛿𝑘 (27) 
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 𝐾𝑘 =
𝑃𝑘𝜙(𝑧𝑘)

𝜆 + 𝜙(𝑧𝑘)𝑇𝑃𝑘𝜙(𝑧𝑘)
 (28) 

 𝑃𝑘+1 =
1

𝜆
[𝑃𝑘 −

𝑃𝑘𝜙(𝑧𝑘)𝜙(𝑧𝑘)𝑇𝑃𝑘

𝜆 + 𝜙(𝑧𝑘)𝑇𝑃𝑘𝜙(𝑧𝑘)
], (29) 

 

sendo  𝜆, 0 < 𝜆 ≤ 1, o fator de esquecimento e 𝑃𝑘 é a matriz de correlação inversa.  

O esquema de aprendizado por reforço empregado neste trabalho exige uma política de controle 

inicial estável. A finalidade é manter o controlador estável durante os instantes iniciais até que o agente 

adquira experiência suficiente (observando o ambiente) para que uma nova política possa ser calculada. 

Por simplificação, os ganhos da rede neural devem ser inicializados de modo a resultar em um 

controlador PD (Proporcional-Derivativo) discreto. Este pode ser implementado modificando os pesos 

da equação (26), onde observa-se que: 

 𝜑2(𝑧𝑘) = [𝑒𝑘1 𝑒𝑘2 𝑒𝑘3 𝑒𝑘4 𝑒𝑘1
2 𝑒𝑘2

2 𝑒𝑘3
2 𝑒𝑘4

2 𝑥𝑘1
2 𝑥𝑘2

2 𝑥𝑘3
2 𝑥𝑘4

2 ]𝑇 , (30) 

ou seja, ℎ(𝑥𝑘, 𝑑𝑘) depende diretamente dos erros de posição e velocidade dos elos. Posto isto, constata-

se que facilmente pode-se obter um controle PD estabelecendo, por exemplo, 

 

 
𝑤𝑖,31 = 𝑤𝑖,32 =

1

2
 , 

𝑤𝑖,21 = [𝐾𝑃1
0 𝐾𝐷1

0 0 0 0 0 0 0 0 0]𝑇 , 

𝑤𝑖,22 = [0 𝐾𝑃2
0 𝐾𝐷2

0 0 0 0 0 0 0 0]𝑇 , 

(31) 

 

onde 𝐾𝑃1
 e 𝐾𝐷1

, e 𝐾𝑃2
 e 𝐾𝐷2

 são os ganhos proporcional e derivativo, respectivamente, das juntas 1 e 

2. O ajuste desses parâmetros será realizado por tentativa e erro.  

Um resumo do algoritmo de aprendizado por reforço ator-crítico implementado neste estudo é 

apresentado a seguir.  

 

Algoritmo RL Ator-Crítico 
Entrada: fator de desconto 𝛾, fator de aprendizado 𝛼, valor inicial da matriz de covariância 𝛽 e o fator de esquecimento 

𝜆. 

    Inicialize os pesos da rede neural de forma a garantir um controlador PD estável. Meça os estados 𝑥0 e os erros de 

trajetória 𝑒0 iniciais.  Inicialize as matrizes 𝑃0 = 𝛽𝐼, 𝑄𝑐, 𝑅 e 𝑆 arbitrariamente e 𝑖 = 0. 

 Repita para cada amostra dos estados 𝑘 = 0,  1,  2, …  

    Sinal de ruído como componente de exploração 

  𝜉 = [ ] 

                             Sinal de controle 

  𝑢𝑘 = ℎ𝑖(𝑥𝑘 , 𝑑𝑘) + 𝜉 

  Aplique 𝑢𝑘 e meça os estados 𝑥𝑘+1 

  𝑢𝑘+1 = ℎ𝑖(𝑥𝑘+1, 𝑑𝑘+1) 

  𝑒𝑘+1 = 𝑥𝑘+1 − 𝑑𝑘+1 
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O algoritmo inicia-se com os ganhos da RNA definidos arbitrariamente para produzir o efeito 

de um controle PD. Considerou-se a condição inicial da matriz de correlação inversa do RLS dada na 

forma 𝑃0 = 𝛽𝐼, em que 𝛽 é uma constante com valor suficientemente grande e 𝐼 é a matriz identidade. 

Durante os primeiros instantes, não há atualização na política de controle para garantir a estabilidade 

durante o aprendizado inicial, entretanto o vetor de pesos 𝑤𝑘 é calculado a cada passo aplicando as 

equações (27) a (29). O sinal de controle é obtido em cada instante de tempo 𝑘 usando (26). Um sinal 

de ruído 𝜉, conhecido como ruído de exploração, é adicionado na entrada de controle com o propósito 

de aprendizado online (Jiang; Jiang, 2017). Ao fim desse período, os pesos do controlador são 

atualizados, iniciando-se um novo período de aprendizagem. Para fornecer robustez ao algoritmo, a 

atualização dos parâmetros da política é obtida por 

 

 𝑤𝑖+1(𝑐𝑡𝑟𝑙) = 𝛼𝑤𝑘+1 + (1 − 𝛼)𝑤𝑖(𝑐𝑡𝑟𝑙), (32) 

 

onde 𝑤𝑖(𝑐𝑡𝑟𝑙) são os parâmetros do controlador implementado durante o 𝑖-ésimo ciclo, 0 < 𝛼 ≤ 1 é o 

fator de aprendizado. Nesse instante, a matriz 𝑃 é redefinida. Os pesos do controlador são novamente 

mantidos inalterados até que o ciclo em curso tenha se concluído. O processo é repetido até a 

convergência dos parâmetros da rede. Alcançado este objetivo, o controlador opera com pesos 

constantes.  

 

  

  𝑟𝑘 = 𝑒𝑘
𝑇𝑄𝑐𝑒𝑘 + (𝑢𝑘+1 − 𝑢𝑘)𝑇𝑆(𝑢𝑘+1 − 𝑢𝑘) + 𝑢𝑘

𝑇𝑅𝑢𝑘 

   Mínimos quadrados recursivos - RLS 

  Δ𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 = 𝑟𝑘 + 𝛾𝑄̂(𝑥𝑘+1,  𝑢𝑘+1,  𝑒𝑘+1)  

  𝑊̂𝑘 = 𝑤𝑘
𝑇𝜙𝑘 

  𝐾𝑘 =
𝑃𝑘𝜙𝑘

𝜆+𝜙𝑘
𝑇𝑃𝑘𝜙𝑘

 

  𝑤𝑘+1 = 𝑤𝑘 + 𝐾𝑘(Δ𝑜𝑏𝑗𝑒𝑡𝑖𝑣𝑜 − 𝑊̂𝑘) 

  𝑃𝑘+1 =
1

𝜆
(𝑃𝑘 −

𝑃𝑘𝜙𝑘𝜙𝑘
𝑇𝑃𝑘

𝜆+𝜙𝑘
𝑇𝑃𝑘𝜙𝑘

) 

  Se fim de um período de aprendizado: 

   𝑤𝑖+1(𝑐𝑡𝑟𝑙) = 𝛼𝑤𝑘+1 + (1 − 𝛼)𝑤𝑖(𝑐𝑡𝑟𝑙) 

   Atualização da política de controle 

   ℎ𝑖+1 ← −
1

2
[
𝑤𝑖+1(𝑐𝑡𝑟𝑙),31 0

0 𝑤𝑖+1(𝑐𝑡𝑟𝑙),32
]

−1

[
𝜑2

𝑇(𝑧𝑘) 𝟎𝟏×𝟏𝟎

𝟎𝟏×𝟏𝟎 𝜑2
𝑇(𝑧𝑘)

] 𝑤𝑖(𝑐𝑡𝑟𝑙),2 

   𝑃𝑘+1 = 𝛽𝐼 

   𝑖 = 𝑖 + 1 

  fim-se 

 até satisfazer o critério de parada 
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5 ESTRUTURA DE SIMULAÇÃO 

De modo a fornecer uma estrutura de simulação que permita desenvolver os algoritmos e 

realizar os experimentos foi utilizado o software V-REP (Virtual Robotics Experimentation Plataform) 

em conjunto com o MATLAB (Matrix Laboratory). O V-REP é um simulador para robôs de propósito 

geral que fornece vários motores de física para as simulações, diversos modelos robóticos e múltiplas 

configurações do ambiente. Desta forma, é possível personalizar todos os objetos da cena, incluindo 

os parâmetros dos sensores e atuadores, permitindo assim atingir resultados mais fiéis (Rohmer; Singh; 

Freese, 2013). 

No V-REP são disponibilizados diferentes meios de controlar os objetos/modelos na cena, seja 

através de rotinas embarcadas, nós do ROS (Robot Operating System) (Quigley; Gerkey; Smart, 2015), 

API (Application Programming Interface) remota, um plugin ou alguma solução personalizada. Os 

controladores podem ser escritos em C/C++, Python, Java, Lua e MATLAB (Shamshiri et al., 2018). 

Neste estudo, o modelo robótico usado no simulador é controlado por uma rotina externa desenvolvida 

na plataforma MATLAB fazendo uso da API remota. A Figura 3 ilustra a comunicação entre o 

controlador e o ambiente de simulação.  

As configurações a serem seguidas para o funcionamento adequado das simulações usando as 

plataformas descritas acima e dentro do contexto de aprendizado por reforço podem vistas em detalhes 

em (Pluškoski; Ciganović; Jovanović, 2019). 

 

Figura 3. Esquema de controle do V-REP por API remota via MATLAB. 

 
Fonte: Elaborado pelos autores. 

 

6 RESULTADOS DE SIMULAÇÃO 

Nesta seção, os resultados das simulações do esquema de controle proposto neste trabalho são 

apresentados e discutidos. Para execução desses experimentos computacionais foi utilizado o modelo 

do braço robótico UR10 disponível no simulador V-REP. Visto que este articulador possui seis graus 

de liberdade, nestes ensaios o torque gerado pela lei de controle será aplicado apenas nas juntas do 

ombro e do cotovelo (Figura 4) enquanto as demais juntas são desativadas e bloqueadas em suas 
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respectivas posições de equilíbrio (0º). O controle foi realizado utilizando a API remota através de 

rotinas implementadas na plataforma MATLAB.  

 

Figura 4. Juntas do manipulador UR10. 

 
Fonte: Elaborado pelos autores. 

 

A avaliação do esquema de controle via aprendizado por reforço será feita pela análise dos 

resultados de simulações de três tarefas: regulação, seguimento de trajetória de um sinal de múltiplos 

degraus e um sinal senoidal. 

O comportamento dos estados para o caso de regulação é apresentado na Figura 5. A 

configuração inicial das juntas foi definida como 𝑥0 = [𝜋 6⁄ 𝜋 3⁄ 0 0]𝑇 e os parâmetros do 

controlador foram ajustados para os seguintes valores 𝐾𝑃1
= 𝐾𝑃2

= 150, 𝐾𝐷1
= 𝐾𝐷2

= 30, 𝛾 = 0,98, 

𝑄𝑐 = 𝑑𝑖𝑎𝑔(250, 250, 0,001, 0,001), 𝑅 = 𝑑𝑖𝑎𝑔(0,0001, 0,0001), 𝛼 = 0,2 e 𝑃0 = 104𝐼78×78. O 

ciclo de aprendizado para esta simulação foi de 0,8 s. O esforço de controle aplicado nas juntas é 

apresentado na Figura 6 e a atualização dos pesos do ator é exibida na Figura 7.  

 

Figura 5. Trajetória dos estados. 

 
Fonte: Elaborado pelos autores. 
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Figura 6. Sinal de controle. 

 
Fonte: Elaborado pelos autores. 

 

Figura 7. Atualização dos pesos da rede do ator. 

 
Fonte: Elaborado pelos autores. 

 

Na segunda experiência sugerida para validar o controlador implementado, foi utilizado um 

sinal de referência de múltiplos degraus, de modo a simular a tarefa de pegar e colocar (pick and place), 

comumente realizada por manipuladores. Para este experimento o estado inicial foi configurado em 

𝑥0 = [0 0 0 0]𝑇. Os parâmetros de controle foram os mesmos utilizados para o caso de regulação 

exceto para os valores seguintes 𝑄𝑐 = 𝑑𝑖𝑎𝑔(100, 100, 0,001, 0,001), 𝛼 = 0,1, 𝐾𝑃1
= 𝐾𝑃2

= 500, 

𝐾𝐷1
= 𝐾𝐷2

= 50 e ciclo de aprendizado alterado para 2 s. Sob estes ajustes, a resposta de rastreamento, 

o torque aplicado nas juntas e a atualização dos pesos da rede do ator são apresentados nas Figuras 8 

a 11.  
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Como visto, as juntas são capazes de alcançar o sinal de referência com erros dentro dos limites 

aceitáveis e a estabilidade do sistema é mantida durante todo o tempo de simulação. É mostrado 

também que no instante de tempo de 20 s houve um aumento no sinal de controle causando um 

sobressinal indesejado, porém nos instantes seguintes, a partir da 15ª atualização da política (30 s), 

observou-se um aprimoramento no rastreamento em relação a política inicial (primeiros 2 s), 

consequência do aprendizado adquirido.  

 

Figura 8. Seguimento de trajetória da junta do ombro. 

 
Fonte: Elaborado pelos autores. 

 

Figura 9. Seguimento de trajetória da junta do cotovelo. 

 
Fonte: Elaborado pelos autores. 
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Figura 10. Sinal de controle. 

 
Fonte: Elaborado pelos autores. 

 

Figura 11. Atualização dos pesos da rede do ator. 

 
Fonte: Elaborado pelos autores. 

 

No último experimento proposto, um sinal senoidal foi estabelecido como referência para as 

juntas do articulador sob os seguintes ajustes 𝑄𝑐 = 𝑑𝑖𝑎𝑔(200, 200, 0,001, 0,001), 𝐾𝑃1
= 4000, 𝐾𝑃2

=

2000, 𝐾𝐷1
= 50,  𝐾𝐷2

= 20 e 𝛼 = 0,4. Os demais parâmetros foram configurados nos mesmos valores 

do experimento 2. Os resultados da simulação são observados nas Figuras 12 a 15. De acordo com as 

Figuras 12 e 13, onde é mostrado o desempenho de rastreamento, observa-se o aprimoramento do 
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seguimento de trajetória ao fim de cada ciclo de aprendizado (intervalos de 2 s). A partir do terceiro 

ciclo os erros de rastreamento se estabilizam dentro de limites toleráveis.  

 

Figura 12. Seguimento de trajetória da junta do ombro. 

 
Fonte: Elaborado pelos autores. 

 

Figura 13. Seguimento de trajetória da junta do cotovelo. 

 
Fonte: Elaborado pelos autores. 
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Figura 14. Sinal de controle. 

 
Fonte: Elaborado pelos autores. 

 

Figura 15. Atualização dos pesos da rede do ator. 

 
Fonte: Elaborado pelos autores. 

 

7 CONCLUSÃO  

Neste trabalho foi proposto um esquema de controle baseado em aprendizado por reforço 

aplicado em um manipulador robótico, usando uma abordagem ator-crítico. Neste projeto, apenas uma 

rede neural foi treinada para aproximar a função 𝑄 usando apenas as medidas reais do sistema via o 

estimador RLS. A fim de fornecer robustez ao esquema, a atualização da política de controle, obtida 

pela minimização da função 𝑄, ocorre ao fim de um número fixo de iterações (ciclo de aprendizado), 
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mantendo-se constante durante este intervalo. Para aproximar a função valor ação, uma rede neural 

polinomial foi utilizada, mostrando-se adequada para aprender as não linearidades do manipulador. 

Experimentos computacionais com o controlador apresentado foram realizados utilizando o modelo 

do robô UR10 no simulador V-REP. As simulações incluíram a realização da tarefa de regulação e 

seguimento de trajetória dos sinais senoidal e de múltiplos degraus. Nos resultados simulados, 

observou-se a estabilidade das variáveis de estado durante todo o tempo de simulação e a capacidade 

de rastreamento dos sinais de referência, mesmo sem o conhecimento explícito da dinâmica do 

manipulador. 
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