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RESUMO

As incertezas nos parametros de um manipulador robdtico podem afetar, de forma significativa, o
desempenho do manipulador, ocasionando erros de regime e de seguimento de trajetdria.
Controladores adaptativos apresentam-se como uma boa alternativa para esses sistemas, pois possuem
como principal caracteristica a capacidade de aprenderem online usando estimagao de parametros em
tempo real. No entanto, controladores adaptativos ndo sdo geralmente projetados com a qualidade de
serem Otimos com respeito aos critérios de desempenho especificados e, desta forma, nao sdo viaveis
para aplicacdes onde o uso 6timo de recursos ¢ altamente desejavel, como por exemplo em robds
humanoides e robos de servigos. Este artigo apresenta o projeto e investigagao de desempenho de um
controlador que combina caracteristicas de controle adaptativo e controle 6timo para um manipulador
robotico. Especificamente, o esquema de controle proposto ¢ implementado como uma estrutura ator-
critico, a qual esté inserida no contexto de aprendizado por reforco, caracterizando este projeto como
uma abordagem independente do modelo da planta. Em contraste a outros sistemas ator-criticos em
que sdo usadas duas redes neurais independentes, uma para aproximar a fung¢do valor, e a outra para
aprender agdes de controle, neste esquema, se define uma tnica rede neural, o que reduz o numero de
parametros a serem estimados. Os resultados de simulagdo demonstram o desempenho desejado do
controlador proposto que atua em um manipulador de juntas rotativas com dois graus de liberdade.

Palavras-chave: Manipulador Robético. Controle Adaptativo. Controle Otimo. Aprendizado por
Refor¢o. Esquema Ator-Critico.
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ABSTRACT

The uncertainties in the parameters of a robot manipulator can significantly affect the robot
performance, causing steady-state and trajectory following errors. Adaptive controllers are a good
alternative for these systems, since their main feature is the capability to learn online using real-time
parameter estimation. Nevertheless, adaptive controllers are not usually designed to be optimal to a
prescribed performance index, and thus, are not suitable to applications in which optimal use of
resources is highly desirable, for instance humanoid and service robots. This paper presents the design
and performance study of a controller that combine features of adaptive control and optimal control
applied to a robot manipulator. Specifically, the proposed control scheme is implemented as an actor-
critic structure, which is in the reinforcement learning context, characterizing this design as a model-
free approach. In contrast to others actor-critic systems in which two independent neural networks are
used, one for approximating the value function and another for learning the control actions, in this
scheme, a single neural network is defined, reducing the number of parameters to be estimated. The
simulation results validate the desired performance of the proposed controller applied in a two-link
robot manipulator with revolute joints.

Keywords: Robot Manipulator. Adaptive Control. Optimal Control. Reinforcement Learning. Actor-
Critic Scheme.

RESUMEN

Las incertidumbres en los parametros de un manipulador robotico pueden afectar significativamente
al rendimiento del manipulador, provocando errores de régimen y de seguimiento de la trayectoria.
Los controladores adaptativos se presentan como una buena alternativa para estos sistemas, ya que su
principal caracteristica es la capacidad de aprender en linea utilizando la estimacion de pardmetros en
tiempo real. Sin embargo, los controladores adaptativos no suelen disefiarse con la calidad de ser
Optimos con respecto a los criterios de rendimiento especificados y, por lo tanto, no son viables para
aplicaciones en las que es muy deseable el uso dptimo de los recursos, como por ejemplo en robots
humanoides y robots de servicio. Este articulo presenta el disefio y la investigacion del rendimiento de
un controlador que combina caracteristicas de control adaptativo y control éptimo para un manipulador
robético. En concreto, el esquema de control propuesto se implementa como una estructura actor-
critico, que se inserta en el contexto del aprendizaje por refuerzo, lo que caracteriza a este disefio como
un enfoque independiente del modelo de la planta. A diferencia de otros sistemas actor-critico en los
que se utilizan dos redes neuronales independientes, una para aproximar la funcion de valor y otra para
aprender acciones de control, en este esquema se define una Unica red neuronal, lo que reduce el
numero de parametros que deben estimarse. Los resultados de la simulacién demuestran el rendimiento
deseado del controlador propuesto, que acta en un manipulador de juntas rotativas con dos grados de
libertad.

Palabras clave: Manipulador Robético. Control Adaptativo. Control Optimo. Aprendizaje por
Refuerzo. Esquema Actor-Critico.

Revista Boletim de Conjuntura, Sao José dos Pinhais, v.25, n.74, p.1-29, 2026



BOCA

O desenvolvimento de estratégias de controle para manipuladores roboéticos apresenta

1 INTRODUCAO

dificuldades decorrentes das proprias caracteristicas do sistema, isto ¢, um robé articulador ¢ um
sistema dindmico multivaridvel, com fortes ndo-linearidades devidas aos acoplamentos de suas juntas
e movimentos, além de apresentar parametros incertos ou que variam no tempo, tais como a massa €
inércia dos elos, atritos ou folgas nas engrenagens das juntas, variagdes nas cargas de trabalho,
localizagao do centro de massa (que pode mudar quando o robo estiver com carga), entre outras (Fateh;
Fateh, 2019). Estas imprecisdes paramétricas resultam em perdas de exatiddo e velocidade nos
movimentos do manipulador, que em determinadas aplicagdes ¢ altamente indesejavel. Ja a dindmica
nao-linear pode levar o sistema a instabilidade em determinados pontos de operagdo (Craig, 2021).

Controladores convencionais de realimentagdo, tal como o PID (Proporcional-Integral-
Derivativo), sao vastamente utilizados na industria por serem simples, faceis de implementar ¢ por
apresentarem bom desempenho em diversas aplicacdes (Borase et al., 2021). Entretanto, este esquema
de controle, por ser um tipo de controle com ganhos fixos, torna-se insuficiente quando aplicado a
sistemas com ndo linearidades e/ou incertezas (parametros imprecisos, dindmicas ndo-modeladas de
alta frequéncia e perturbacdes), ou seja, sistemas que apresentam pontos de operagdo varidveis
(Konstantopoulos; Baldivieso-Monasterios, 2020).

Dentre os controladores classicos aplicados a manipuladores existem aqueles baseados em
modelo (cinematico e/ou dindmico para controle de posicdo, velocidade e forca). Porém, estas
abordagens necessitam do conhecimento completo das equagdes que descrevem o comportamento do
sistema, sendo elas bastante complexas e com pardmetros que muitas vezes sdo incertos. A
complexidade do modelo cresce também com o aumento de juntas e elos do manipulador, aumentando
o custo computacional para solucionar estas equagdes (Moosavi; Zafar; Sanfilippo, 2022).

A teoria de controle adaptativo fornece meios para desenvolver solugdes para sistemas
dindmicos que demandam controladores mais complexos. Esta abordagem permite compensar, de
forma online, as variacdes e incertezas paramétricas do sistema garantindo que os critérios de
desempenho desejados sejam alcancados (Sun et al., 2020). Tradicionalmente, os métodos de controle
adaptativo podem ser divididos em duas abordagens: controle indireto e controle direto (Qi; Tao; Jiang,
2019). Em controle indireto, a estimagao dos parametros do sistema precede a geragao de uma entrada
de controle. Em controle direto, os pardmetros do controlador sdo diretamente ajustados sem a
necessidade das equagdes que regem o comportamento do sistema.

Na literatura de Controle Adaptativo encontram-se diversos estudos e métodos aplicados ao
controle de trajetoria de manipuladores roboticos. Dubowsky e Desforges (1979) sdo os pioneiros em
empregar técnicas de controle adaptativo em robos articulados. A abordagem usada por estes

pesquisadores foi o Sistema Adaptativo por Modelo de Referéncia (Model Reference Adaptive System
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- MRAS). Resultados praticos também mostraram os beneficios das abordagens baseadas nas técnicas

self-tuning e backstepping em relacdo ao controle convencional com ganhos fixos (Clegg; Dunnigan;
Lane, 2001) (Sasaki et al., 2009) (Hu; Xu; Zhang, 2012). Abordagens hibridas também foram
exploradas (Maliotis, 1991) (Al-Olimat; Ghandakly, 2002) (Chen, 2005) (Alqaudi et al., 2016) (Zhang;
Wei, 2017). Em (Wu; Yan; Cai, 2019) (Fateh; Fateh, 2019) (Yilmaz et al., 2022) (Freire; Rossomando;
Soria, 2018) sdo propostos projetos de controle adaptativo baseados em técnicas de inteligéncia
artificial, tais como redes neurais e ldgica fuzzy, que sdo capazes de compensar as incertezas do modelo
de um robd manipulador.

Apesar das técnicas de controle adaptativo terem alcangado sucesso em muitas aplicagdes, um
aspecto que deve ser observado ¢ que os projetos de controladores resultantes desses métodos, em
geral, tém sido estruturados sem considerar a otimizagao da agdo de controle e, desta forma, ndo sdo
viaveis para aplicacdes onde o uso de estratégias 6timas de controle ¢ requerida, como por exemplo
em robds humanoides/robds de servigos (Khan ez al., 2012). Nesse caso, uma abordagem conjunta das
técnicas de controle adaptativo e controle 6timo ¢ desejada. Controle 6timo consiste basicamente em
determinar uma lei de controle de maneira a minimizar um critério de desempenho desejado. No
contexto da robdtica, critérios de desempenho podem envolver a energia ou forga para a execucao do
movimento, a0 mesmo tempo que devem ser satisfeitas as restrigdes fisicas do sistema, tais como
limites dos atuadores ou das juntas.

Muitos esforcos na teoria de controle de sistemas estdo atualmente concentrados em uma area
do aprendizado de méaquina baseada nos estudos do comportamento animal e psicologia cognitiva,
chamada Aprendizado por Reforgo (Reinforcement Learning - RL), que visa incorporar caracteristicas
de sistemas biologicos para o tratamento de sistemas com incertezas, introduzindo diversos termos,
tais como adaptacdo, aprendizado, reconhecimento de padrdes e auto-organizagao (Guo; Yan; Cui,
2020) (Yaghmaie; Gustafsson; Ljung, 2023) (Chen; Dai; Dong, 2024a) (Chen; Dong; Dai, 2024b)
(Zhao et al., 2025) (Su et al., 2025) (Wang et al., 2025). O tema central na pesquisa de RL € o projeto
de algoritmos que aprendem politicas de controle 6timas através do conhecimento apenas de amostras
de transi¢do dos estados ou trajetorias, que sao coletadas antecipadamente ou pela interacdo em tempo
real com o sistema.

Me¢étodos Ator-Critico constituem uma classe de técnicas de aprendizado por reforco que
consistem essencialmente de duas estruturas paramétricas independentes (por exemplo, redes neurais),
uma para representar a politica de controle, denominada Ator, e a outra estrutura de rede ¢ para
representar a fun¢do valor, chamada Critico (Sutton; Barto, 2018). O ator ¢ um agente que interage
com o ambiente, ou seja, o ator ¢ o controlador que estabelece agdes de controle, enquanto o critico

avalia o efeito das a¢des de controle e fornece diretrizes sobre como melhorar a lei de controle.
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Aprendizado por refor¢o pode ser visto em (Kiumarsi et a/, 2018) na perspectiva de um campo

de pesquisa promissor para o projeto de uma classe de controladores adaptativos com estrutura ator-
critico que aprendem online solugdes de controle 6timo sem fazer uso do modelo da dindmica do
sistema (planta). Esta abordagem resolve a equagdo de otimizacdo (equacao de Hamilton-Jacobi-
Bellman - HIB) em uma maneira "para frente no tempo" usando métodos de diferencas temporais,
aproximacao de fun¢des e melhorias de politicas. Tais controladores sdo inspirados em estruturas
neurais bioldgicas que fornecem capacidades para lidar de forma eficaz com o grau de complexidade
de sistemas nao-lineares, incertos e parcialmente observaveis. Em (Kiumarsi et al, 2018), sdo
apresentadas as principais ideias e algoritmos de aprendizado por refor¢o bem como suas aplicagdes

em controle 6timo de sistemas dinAmicos.

1.1 OBJETIVOS

O presente artigo tem por objetivo avaliar o potencial de um algoritmo de aprendizado por
reforco para resolver problemas de controle 6timo online da trajetoria de um manipulador robotico
com espaco de estado continuo (espago das juntas). Em contraste com a maioria dos algoritmos ator-
critico reportados na literatura (vide Secdo 2), em que se utilizam duas redes neurais, uma para
aproximar a fun¢do valor, e a outra para aprender agdes de controle, o algoritmo proposto neste trabalho
emprega uma arquitetura ator-critico onde uma tnica rede neural ¢ usada para aproximar a solucao da
equagdo HJB, o que reduz significativamente o numero de pardmetros a serem estimados.
Especificamente, neste esquema, agdes de controle sdo calculadas de maneira exata por meio de um
esquema de politica gulosa com respeito a funcdo valor, ao invés de se usar um aproximador
paramétrico para representar a politica de controle. Experimentos realizados em um brago robotico
URI10 do simulador V-REP mostram que tal algoritmo aprende com sucesso a lei de controle 6timo

para as tarefas de regulagdo e rastreamento para diferentes sinais de referéncia.

2 TRABALHOS CORRELATOS

Contribuigdes anteriores importantes para o projeto de controle fundamentado em RL incluem
os trabalhos de Peters e Schaal (2008a) (2008b), que investigaram diversos métodos de aprendizado
por refor¢o para robos humanoides. Esses métodos foram classificados em trés categorias: politica
gulosa, gradiente de politica “vanilla” e gradiente de politica natural. A abordagem Ator-Critico
natural, que explora a formulagdao do gradiente de politica natural, foi destacada pelos autores por
apresentar melhores propriedades de convergéncia. Uma extensdo desse estudo € mostrada em
(Bhatnagar et al., 2009).

J& (Shah; Gopal, 2009) apresentaram uma abordagem de controle baseada em Aprendizado Q

para robds manipuladores em ambientes incertos e forneceram um estudo comparativo de diferentes
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métodos de aproximacgao de fung¢do, tais como fuzzy, redes neurais, arvore de decisdo € maquina de

vetor de suporte.

Em (Khan et al., 2011, 2012), os autores enfatizaram aplicacdes de controladores RL em
sistemas roboticos e propuseram um esquema de controle adaptativo 6timo fundamentado em
Aprendizado Q (Q-Learning) e Programagao Dinamica Aproximada. A estratégia foi implementada no
brago de um rob6é humanoide (Bristol Elumotion-Robotic-Torso II) considerando um caso sem
restrigdes e outro com restrigdes de movimento.

Em (Pane; Nageshrao; Babuska, 2016), os autores forneceram validagao experimental de um
compensador baseado em aprendizado Ator-Critico para melhorar o desempenho de um robo
manipulador. O método proposto dispensa a necessidade de aprender o modelo do sistema e pode ser
utilizado em qualquer controlador por realimentagdo (PID, LQR etc.). A validagdo do método foi
demonstrada através de experimentos em um roboé manipulador industrial com seis graus de liberdade
para diferentes tipos de trajetdrias de referéncia. Uma extensao desse trabalho ¢ apresentada em (Pane
etal., 2019).

A aplicacdo de controladores RL em manipuladores robdticos também é mostrada em (Hu; Si,
2018). Nesse trabalho, uma estratégia de Aprendizado Ator-Critico com observador de estado via rede
neural foi implementada para controlar um brago robdtico com pardmetros desconhecidos e sujeito a
zonas mortas desconhecidas.

Khan et al. (2019) propuseram um controle de complacéncia adaptativo 6timo para um
dispositivo robodtico de auxilio a locomogao. O esquema de controle sugerido ¢ fundamentado em
Aprendizado Q e programacao dinamica aproximada. Esse esquema ¢ completamente independente
de modelo dindmico e emprega realimentagdo da posicao e velocidade da junta, bem como o torque
detectado da junta (aplicado pelo usudrio durante a caminhada) para controle de complacéncia. A
eficiéncia do controlador ¢ testada em simulacdo em um modelo de dispositivo robdtico de auxilio a
locomocao.

Kamboj ef al. (2020) apresentaram uma estratégia de controle cinemdtico 6timo em tempo
discreto para um manipulador usando a estrutura Ator-Critico. A metodologia exposta foi aplicada em
um modelo 3D de um manipulador com seis graus de liberdade em experimentos realizados em um
software de simulag¢do. Em seguida, implementou-se a estratégia em um rob6 real do mesmo modelo
do simulado.

Em (He et al., 2021), os autores discutiram o projeto de controle e a validagdo de experimentos
de um sistema de manipulador flexivel de dois elos. Uma estratégia de controle de aprendizado por
reforgo ¢ desenvolvida com base na estrutura ator-critico para atenuar vibragcdes enquanto mantém o

rastreamento da trajetoria.
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Um controlador de rastreamento baseado em Aprendizado Ator-Critico para um manipulador

também foi estudado por (Cao et al., 2023). Nesse trabalho, a técnica de modos deslizantes ¢ utilizada
para que a a¢do obtida pelo esquema Ator-Critico garanta a convergéncia do erro de rastreamento em
um tempo fixo. Além disso, um compensador antiwindup foi projetado para lidar com os efeitos da
saturagcdo do atuador da junta.

Na literatura acima, a maioria dos algoritmos RL ator-critico sdo implementados utilizando
duas redes neurais, uma para aproximar a fun¢ao valor, e a outra para aprender a¢des de controle. Para
reduzir a complexidade computacional associada com métodos ator-criticos, propde-se, no presente
artigo, uma arquitetura onde uma unica rede neural € usada para aproximar a solu¢ao de controle 6timo,
o que reduz significativamente o numero de parametros a serem estimados. Especificamente, a¢des de
controle sdo calculadas de maneira exata por meio de um esquema de politica gulosa com respeito a

fung¢do valor, ao invés de se usar uma aproximagao paramétrica para representar a politica de controle.

3 DESCRICAO DO SISTEMA MANIPULADOR ROBOTICO

Um manipulador robotico, ou robo articulado, é formado por um conjunto de corpos individuais
conectados entre si formando uma cadeia cinematica capaz de realizar tarefas através da interagdo com
o ambiente (Craig, 2021). As duas partes fundamentais que compdem um robd articulado sdo os elos,
ou articulagdes, € as juntas. Os elos s3o as estruturas fisicas (rigidas ou flexiveis) que compdem o robo.
Ja as juntas sdo responsaveis por promover o movimento relativo entre as articulagdes por meio de
acionadores e s3o comumente classificadas de acordo com mobilidade que estas viabilizam. Os tipos

mais comuns encontrados na industria sdo as juntas rotacionais e as prismaticas.

Figura 1. Elos e Juntas de um robd articulado.

Junta
Elo®

Juntas -

Fonte: Abbas, 2018.
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A Figura 1 ilustra uma sequéncia de elos e juntas de um brago robotico. As extremidades do

robd articulador sdo denominadas de base e efetuador. A base fica ligada ao primeiro elo e fixa o
mecanismo em algum ponto no espaco de tarefas. O efetuador ¢ uma ferramenta conectada ao ultimo
elo do articulador e ¢ por este ponto que hé a interacdo com o ambiente. O tipo de atuador instalado

dependera da tarefa a ser executada.

3.1 EQUACOES DINAMICAS DE UM MANIPULADOR ROBOTICO

A dinamica dos manipuladores estuda a relagdao entre as forgas aplicadas nos atuadores das
juntas e o movimento do mecanismo. A formulacao de Lagrange permite modelar o comportamento
dindmico de um corpo em termos das energias cinéticas e potenciais ao invés de considerar os

momentos e forgas aplicadas individualmente em cada junta. A equacdo de Lagrange ¢ expressa por

d (0L JdL
-a(59)" % W

em que K (+) é a energia cinética e U(-) ¢ a energia potencial armazenada no mecanismo. Essa equagio
¢ escrita em termos das coordenadas generalizadas q do articulador e sua derivada g no tempo. O termo
T, por sua vez, representa o vetor generalizado de forcas, incluindo as forgas e os torques aplicados no
sistema.

Para um rob6 manipulador com n elos rigidos, a energia cinética pode ser escrita na forma

n
K@) =) k ©
i=0
1 1 .
k; = Emlvg ve, + Ew?%liwi ) “)

em que k; é a energia cinética para o i-ésimo elo. Para cada elo, tem-se duas componentes, uma

relacionada a velocidade linear v¢,, € a outra, a velocidade angular w;, relativas ao centro de massa da

. . ~ . Cl I3 . .y .
respectiva articulagdo, com m; a massa do elo i, e ;:I; € a matriz de inércia.

A energia potencial pode ser expressa como
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n

U@ = u ©)

i=0
u; = myg' P, (6)

em que u; ¢ a energia potencial para o i-ésimo elo, definida em termos da massa m;, do vetor de
gravidade g e da localizagdo P¢, do centro de massa relativo a base.
Aplicando-se o lagrangeano L(-) na equag¢do (1), pode-se reordenar os termos da expressio

resultante de modo a obter

T=M(q)G+N(q,9) + G(q), ()

em que M(q) é a matriz n X n de massa do manipulador, N(q, ¢) é um vetor de dimensdo n X 1
relacionado as forgas de Coriolis e centripeta, ¢ G(q) ¢ um vetor n X 1 com os termos que envolvem
a gravidade.

Desse modo, o modelo de um manipulador pode ser escrito na forma de Espaco de Estados por

[Z] - [—M‘l(qN + G)] “
+ [MO—1] T.
4 METODOLOGIA

No contexto de controle 6timo e aprendizado por refor¢o, a nogdo de maximizar recompensas
futuras ponderadas é modificada para minimizar o custo de controle. Desta forma, o objetivo é
determinar uma lei de controle ou politica de controle h*(xy, dy) = u; que minimize o indice de

desempenho (fungdo valor)

Ve di) = ) v, dy) ©
i=k

onde x; € R™ é 0 vetor de estado, u;, € R™ ¢ o vetor de entrada de controle, d;, é o vetor de trajetdria
desejada, 0 < y < 1 é o fator de desconto, e r(-) é a funcdo de utilidade que retorna o custo de controle
em um passo de tempo. Uma funcéo de utilidade razoavelmente geral em problemas de minimizagao

de energia é dada por:
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onde R é uma matriz definida positiva. O vetor d; pode ser descrito como uma demanda de projeto,

r(xi, u;, dl) = f"(xl-, dl) + ul-TRui, (10)

fazendo com que 7(-) represente o0 custo para executar a tarefa desejada, como por exemplo, o custo
de rastreamento.
Usando o principio da otimalidade de Bellman (Vrabie; Vamvoudakis; Lewis, 2013), o indice

de desempenho 6timo pode ser escrito como

V* (g, di) = n};in(r(xk'uk' di) + ¥V* Xier1, dier1)). (11)

Em aprendizado por reforco, uma variante da funcao valor V(-), chamada funcéo Q (ou funcéo
valor acdo), é usada. Tal funcdo tem uma aplicacdo apropriada nos projetos de controle em que o
modelo da planta ndo esta disponivel. A funcdo Q associada a uma politica de controle h é definida

por
Q" (X, U, di) = (ks Wiy die) + YV (g1, diesr), (12)
e a funcdo Q 6tima satisfaz a seguinte equacéo

Q" (xp, g, di) = 1(xp, U, di) + ¥V (Xps1, dis1)- (13)

Combinando as equacdes (11) e (13), a equacdo da otimalidade de Belmann em termos da

funcdo Q é dada por
V*(xg, di) = min(Q*(xk; Uk, dk)) (14)
Uy
e a politica de controle 6tima € obtida por
h*(xx, di) = argmin Q” (xy, uy, di.). (15)
Uk

Supondo Q* suficientemente suave (diferenciavel), o sinal de controle pode ser obtido como

solucéo da equacéo
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0Q" (xx, uy, dy) —0 (16)

auk

4.1 ESTRATEGIA DE APRENDIZADO ONLINE ATOR-CRITICO

O esquema ator-critico descrito a seguir considera um sistema manipulador com dois graus de
liberdade, podendo ser estendido para manipuladores com n graus de liberdade. A lei de controle é
sintetizada no problema de rastreamento 6timo da posi¢do das juntas do manipulador. Em particular,
X = [¥k1  Xk2 Xk3  Xka]T € definido como o vetor de estado no instante de tempo k, onde x;; =
q. € X, = g, S80, respectivamente, a posi¢do angular da junta 1 e da junta 2, e x5 = G; € Xx4 = G5
sdo, na ordem devida, a velocidade angular da junta 1 e da junta 2. O sinal de controle, naturalmente,
é um vetor 2 x 1 onde u;, = t é a forca aplicada nas juntas. Para o problema de rastreamento 6timo

considerado, a funcdo de utilidade reduz-se a
(X, e W) = e Qcey + (Uperq — W) S (Wpeyr — W) + uRuy =17, 17)

em que Q, € R*¥* R € R?*? ¢ § € R?*2 sdo matrizes definidas positivas e diagonais.
No presente estudo, a estrutura paramétrica para aproximar a funcdo Q assume a forma dada

por

Qi(xkl uk: dkr Wi) = Wl:T(l)(xkt uk; dk): (18)

em que w; € a i-ésima estimacdo do vetor de pesos da rede neural e ¢(-) é o vetor de fungdes de
ativacdo ou funcdes de base. Considera-se que o valor desejado para estimacdo do parametro w; é dado

por

Aopjetivo = T(xk, €x, uy) + V@i(xk+1fuk+1:dk+1) (19)

A Figura 2 ilustra a arquitetura da rede neural utilizada para estimar a funcdo Q, em que m =
4,n = 2ep = 105. As fungbes ¢;, j = 1, ..., p, sdo as componentes do vetor de funcdes de ativacdo
resultantes do produto de Kronecker dado na equacéo (21).

O vetor de pesos w; € calculado pela minimizacéo, em um sentido dos minimos quadrados, do

erro de diferencial temporal, que é definido por

Revista Boletim de Conjuntura, Sao José dos Pinhais, v.25, n.74, p.1-29, 2026



BOCA

Figura 2. Arquitetura da rede neural utilizada para estimar a funcao Q.
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Fonte: Elaborado pelos autores.
Ok = 1 + ¥Qi Oies 1, Wi 1s A1, W) — Qi (e, Wi, dig, W). (20)

O vetor de funcGes de ativacdo € construido por polindmios de ordem superior. Por
simplificacdo, ¢(+) sera representado utilizando o produto de Kronecker @ com a exclusdo dos termos
redundantes (Vrabie; Vamvoudakis; Lewis, 2013). Esta exclusdo € necessaria para que os elementos
que compdem o vetor de funcBes de base ¢ () tornam-se linearmente independentes. O objetivo é
inserir alguns elementos quadraticos e termos de até quarta ordem dos erros de rastreamento, dos
estados e dos sinais de controle, de modo que a rede neural possa aprender as nao-linearidades do

manipulador. Portanto,

d(zx) = 2, Q 2y, (21)
em que
Zy = [u£ e;f 9131 el%z 9133 91%4 xl%l xl%z x,§3 x1§4]T (22)

de modo que e, = [€x1 €xz €k3 €xa]T = x;, —dy € 0 erro de rastreamento. Desta maneira, a
Rede Neural Artificial (RNA) a ser implementada possui 105 neurdnios.

A funcio Q toma a forma

Q; Cxy, ug, di, wy) = W51<P1(Zk) + WEzﬂPz (Zr)uger + Wi?zz‘Pz (Zk)Upp + Wiz1Ufy + (23)

2
Wi 32U,
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onde ¢(z) = [0l (zr) 0¥ (zuks @X(z)u, uZ, uz,]T é decorrente da equagdo (21).

Especificamente, os elementos que compdem ¢ (-) e ¢, (+) sdo independentes de uy; € u..

Aplicando a equacdo (16) para determinar a politica de controle, temos

a@i(xkr U, dk! Wi)
aukl

= WiTZl(pZ(Zk) + 2wi31Uk =0

1
Uy = —mwfmwz (zx) (24)

a@i(xkr U, dk! Wi)
QU

= W{ZZ‘PZ (Zk) + 2w;3Up, = 0

1

_Wiquzfpz (Zi). (25)

u2=—
k 2w 3,

Reorganizando na forma matricial, a politica de controle pode ser escrita como

1[w; 0 1 '10l(z 0
b (e, d) = __[ i31 | ] @2 (zx) T1><12 Wi (26)
2L 0 wis 01512 92 (zx)

— T T 1T
emque w;, = [Wi,21 Wi,zz] .
Em aprendizado por reforco, o ator é 0 agente que gera a politica de controle, ou seja, o ator é

descrito matematicamente pela equagéo (26). Ja o critico, é descrito pela equagdo (23).

4.2 ALGORITMO DE APRENDIZADO ONLINE ATOR-CRITICO

Um aspecto relacionado a abordagem ator-critico € que as estimativas da funcdo Q de uma dada
politica de controle sdo atualizadas a cada passo de tempo k usando dados observados do sistema
(estados do manipulador). Para tanto, sera utilizado o algoritmo iterativo dos minimos quadrados
recursivos (Recursive Least-Squares - RLS) para a estimagdo do vetor de pesos w;. A eficiéncia do
método RLS no aprendizado online € principalmente devido a sua robustez para lidar com variacfes
nos parametros de regressao e a rapida convergéncia (Ferreira; Régo; Neto, 2017).

Portanto, aplicando o algoritmo RLS, a estimativa dos pesos da RNA, a cada passo de tempo

k, é dada por

Wii1 = Wi + Kby (27)
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B P (2)
Kie = A+ ¢z )T Pep(zy) @
1 P (zi)p(2i)" Py (29)

e = 715 " T3 90 Pt o))

sendo 1,0 < A < 1, o fator de esquecimento e P, € a matriz de correlagdo inversa.

O esquema de aprendizado por reforco empregado neste trabalho exige uma politica de controle
inicial estavel. A finalidade é manter o controlador estavel durante os instantes iniciais até que o agente
adquira experiéncia suficiente (observando o ambiente) para que uma nova politica possa ser calculada.
Por simplificacdo, os ganhos da rede neural devem ser inicializados de modo a resultar em um
controlador PD (Proporcional-Derivativo) discreto. Este pode ser implementado modificando os pesos
da equacéo (26), onde observa-se que:

92(zi) = lex1 ex2 €ks €k €1 €z €z €ia Xew Xiz Xz Xial' (30)
ou seja, h(xy, d;) depende diretamente dos erros de posicdo e velocidade dos elos. Posto isto, constata-

se que facilmente pode-se obter um controle PD estabelecendo, por exemplo,

1
Wi31 = Wi3z2 = Pk

Wi =[Ke, O Ko, 0 0 0 0 0 0 0 0 0], 31)
Wi, =[0 Kp, O K, 0 0 0 0 0 0 0 0],

onde Kp, e Kj_, € Kp, € Kp, sdo os ganhos proporcional e derivativo, respectivamente, das juntas 1 e

2. O ajuste desses parametros seré realizado por tentativa e erro.
Um resumo do algoritmo de aprendizado por reforco ator-critico implementado neste estudo é

apresentado a seguir.

Algoritmo RL Ator-Critico
Entrada: fator de desconto y, fator de aprendizado «, valor inicial da matriz de covariancia g e o fator de esquecimento
A.
Inicialize os pesos da rede neural de forma a garantir um controlador PD estavel. Meca os estados x, e 0s erros de
trajetdria e, iniciais. Inicialize as matrizes P, = BI, Q., R e S arbitrariamente e i = 0.
Repita para cada amostra dos estados k = 0, 1, 2, ...
> Sinal de ruido como componente de exploracédo

$=11

> Sinal de controle

w = hi(xp, di) + €

Aplique u;, e meca os estados x;.,,

U1 = hi(Xps1, Aiesr)

€kt1 = X1 — g1
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— T T T
T = e Qcer + (Upsr — W) S(Wpeqr — W) + we Ry
> Minimos quadrados recursivos - RLS
Aopjetivo = Tk +VQ (X1s U+1s €s1)

Wk = W}Z‘Pk
Pror
K, = ———
k7 2+olPedr

Wir1 = Wi + K (Bopjetivo — W)

P, = 1( _ M)
k+1 2 k /1+¢£Pk¢k

Se fim de um periodo de aprendizado:
Wisietrt) = @Wipr + (1 — @)Wy

I>Atualizagdo da politica de controle

-1
b et Wit1(ctr),31 0 ] [‘Pg(zk) 01x10 W
o 2 0 Wit1(ctri)32 Oct0 @5 (z)] T2
Priq =PI
i=i+1

fim-se
até satisfazer o critério de parada

O algoritmo inicia-se com os ganhos da RNA definidos arbitrariamente para produzir o efeito
de um controle PD. Considerou-se a condigdo inicial da matriz de correlagéo inversa do RLS dada na
forma P, = I, em que 8 € uma constante com valor suficientemente grande e I € a matriz identidade.
Durante os primeiros instantes, ndo ha atualizacéo na politica de controle para garantir a estabilidade
durante o aprendizado inicial, entretanto o vetor de pesos wy, € calculado a cada passo aplicando as
equacdes (27) a (29). O sinal de controle é obtido em cada instante de tempo k usando (26). Um sinal
de ruido &, conhecido como ruido de exploracdo, € adicionado na entrada de controle com o proposito
de aprendizado online (Jiang; Jiang, 2017). Ao fim desse periodo, os pesos do controlador sdo
atualizados, iniciando-se um novo periodo de aprendizagem. Para fornecer robustez ao algoritmo, a

atualizacdo dos parametros da politica é obtida por

Wisi(etrl) = @Wi1 + (1 — @Wierrn, (32)

onde w;¢tr) sS40 0s parametros do controlador implementado durante o i-ésimo ciclo, 0 <a < 1¢éo0

fator de aprendizado. Nesse instante, a matriz P é redefinida. Os pesos do controlador sdo novamente
mantidos inalterados até que o ciclo em curso tenha se concluido. O processo é repetido até a
convergéncia dos pardmetros da rede. Alcancado este objetivo, o controlador opera com pesos

constantes.
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De modo a fornecer uma estrutura de simulagdo que permita desenvolver os algoritmos e

5 ESTRUTURA DE SIMULACAO

realizar os experimentos foi utilizado o software V-REP (Virtual Robotics Experimentation Plataform)
em conjunto com o0 MATLAB (Matrix Laboratory). O V-REP é um simulador para robds de proposito
geral que fornece varios motores de fisica para as simulacdes, diversos modelos roboticos e multiplas
configuracBes do ambiente. Desta forma, é possivel personalizar todos os objetos da cena, incluindo
0s parametros dos sensores e atuadores, permitindo assim atingir resultados mais fiéis (Rohmer; Singh;
Freese, 2013).

No V-REP séo disponibilizados diferentes meios de controlar os objetos/modelos na cena, seja
através de rotinas embarcadas, nds do ROS (Robot Operating System) (Quigley; Gerkey; Smart, 2015),
API (Application Programming Interface) remota, um plugin ou alguma solugéo personalizada. Os
controladores podem ser escritos em C/C++, Python, Java, Lua e MATLAB (Shamshiri et al., 2018).
Neste estudo, o modelo robdtico usado no simulador é controlado por uma rotina externa desenvolvida
na plataforma MATLAB fazendo uso da API remota. A Figura 3 ilustra a comunicacdo entre o
controlador e o0 ambiente de simulagéo.

As configuracdes a serem seguidas para o funcionamento adequado das simulacdes usando as
plataformas descritas acima e dentro do contexto de aprendizado por refor¢o podem vistas em detalhes

em (Pluskoski; Ciganovi¢; Jovanovi¢, 2019).

Figura 3. Esquema de controle do VV-REP por API remota via MATLAB.
Computador Pessoal

/ @ MATLAB \ Posicio / }v-rep \

q

Estados

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! x=[gql . '
1 . 1
1 Algoritmo de V-REP Velocq'dade !
1 . ~ - R —
: Aprendizado por Acko APT Remota !
! Refor¢o ® Torque !
T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1

Fonte: Elaborado pelos autores.

6 RESULTADOS DE SIMULAC}AO

Nesta secdo, os resultados das simulag¢des do esquema de controle proposto neste trabalho séo
apresentados e discutidos. Para execugédo desses experimentos computacionais foi utilizado o modelo
do braco robotico UR10 disponivel no simulador V-REP. Visto que este articulador possui seis graus
de liberdade, nestes ensaios o torque gerado pela lei de controle sera aplicado apenas nas juntas do

ombro e do cotovelo (Figura 4) enquanto as demais juntas sdo desativadas e bloqueadas em suas
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respectivas posicdes de equilibrio (0°). O controle foi realizado utilizando a API remota através de

rotinas implementadas na plataforma MATLAB.

Figura 4. Juntas do manipulador UR10.

Cotovelo

Fonte: Elaborado pelos autores.

A avaliacdo do esquema de controle via aprendizado por reforco sera feita pela analise dos
resultados de simulacdes de trés tarefas: regulacdo, seguimento de trajetéria de um sinal de maltiplos
degraus e um sinal senoidal.

O comportamento dos estados para o caso de regulacdo é apresentado na Figura 5. A
configuracéo inicial das juntas foi definida como x, = [r/6 w/3 0 0]7 e os pardmetros do
controlador foram ajustados para os seguintes valores Kp, = Kp, = 150, Kp, = Kp, = 30,y = 0,98,
Q. = diag(250, 250, 0,001, 0,001), R = diag(0,0001, 0,0001), @ = 0,2 € Py = 10*I,5475. O
ciclo de aprendizado para esta simulacdo foi de 0,8 s. O esforco de controle aplicado nas juntas é

apresentado na Figura 6 e a atualizacdo dos pesos do ator é exibida na Figura 7.

Figura 5. Trajetoria dos estados.

[=2]
(=1

referéncia

— (] i

L
=

e (]

=

Trajetéria Simulada (graus)
\ )
(=]

(5]
=

] 2 El [ 8 10 12 14 16 18 20

time (s)

W

E T T T T T T T T T

=3

m

k=

a Of

=

)

E referéncia

'LB -100 _|£'| B

2 — i

m

=

(=]

% 200 I 1 1 1 1 I I I 1

= 0 2 4 [ ] 10 12 14 16 18 20
time (s)

Fonte: Elaborado pelos autores.

Revista Boletim de Conjuntura, Sao José dos Pinhais, v.25, n.74, p.1-29, 2026



BOCA

Figura 6. Sinal de controle.
100 T T T T T T T

2
50 1
L _-— -
-100 1

-150 | .

=]

Entrada de Controle
&
o

=200
2 4 5] 8 10 12 14 16 18 20

time (s)
Fonte: Elaborado pelos autores.

Figura 7. Atualizacdo dos pesos da rede do ator.
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Na segunda experiéncia sugerida para validar o controlador implementado, foi utilizado um
sinal de referéncia de maltiplos degraus, de modo a simular a tarefa de pegar e colocar (pick and place),
comumente realizada por manipuladores. Para este experimento o estado inicial foi configurado em
xo=1[0 0 0 0]7.Osparametros de controle foram os mesmos utilizados para o caso de regulagio
exceto para os valores seguintes Q. = diag(100,100,0,001,0,001), « = 0,1, Kp, = Kp, = 500,
Kp, = Kp, = 50 e ciclo de aprendizado alterado para 2 s. Sob estes ajustes, a resposta de rastreamento,
0 torque aplicado nas juntas e a atualizacéo dos pesos da rede do ator sdo apresentados nas Figuras 8
all.
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Como visto, as juntas sdo capazes de alcancar o sinal de referéncia com erros dentro dos limites

aceitaveis e a estabilidade do sistema é mantida durante todo o tempo de simulagdo. E mostrado
também que no instante de tempo de 20 s houve um aumento no sinal de controle causando um
sobressinal indesejado, porém nos instantes seguintes, a partir da 15% atualizacdo da politica (30 s),
observou-se um aprimoramento no rastreamento em relacdo a politica inicial (primeiros 2 s),

consequéncia do aprendizado adquirido.

Figura 8. Seguimento de trajetoria da junta do ombro.
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Fonte: Elaborado pelos autores.

Figura 9. Seguimento de trajetoria da junta do cotovelo.
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Fonte: Elaborado pelos autores.
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Figura 10. Sinal de controle.
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Figura 11. Atualizacdo dos pesos da rede do ator.
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Fonte: Elaborado pelos autores.

No ultimo experimento proposto, um sinal senoidal foi estabelecido como referéncia para as
juntas do articulador sob os seguintes ajustes Q. = diag (200,200, 0,001, 0,001), Kp, = 4000, Kp, =
2000, Kp, =50, Kp, = 20 e a = 0,4. Os demais parametros foram configurados nos mesmos valores

do experimento 2. Os resultados da simulagéo s&o observados nas Figuras 12 a 15. De acordo com as

Figuras 12 e 13, onde é mostrado o desempenho de rastreamento, observa-se o aprimoramento do
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seguimento de trajetoria ao fim de cada ciclo de aprendizado (intervalos de 2 s). A partir do terceiro

ciclo os erros de rastreamento se estabilizam dentro de limites toleraveis.

graus/s)

Pty

Velocidade Simulada

Trajetaria Simulada (graus)

Figura 12. Seguimento de trajetéria da junta do ombro.
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Fonte: Elaborado pelos autores.
Figura 13. Seguimento de trajetoria da junta do cotovelo.
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Figura 14. Sinal de controle.
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Fonte: Elaborado pelos autores.

Figura 15. Atualizacdo dos pesos da rede do ator.
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BOCA

Neste trabalho foi proposto um esquema de controle baseado em aprendizado por reforco

aplicado em um manipulador robético, usando uma abordagem ator-critico. Neste projeto, apenas uma

rede neural foi treinada para aproximar a fungdo Q usando apenas as medidas reais do sistema via o

estimador RLS. A fim de fornecer robustez ao esquema, a atualizacdo da politica de controle, obtida

pela minimizacdo da funcéo Q, ocorre ao fim de um nimero fixo de iteragdes (ciclo de aprendizado),
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mantendo-se constante durante este intervalo. Para aproximar a funcdo valor acdo, uma rede neural

polinomial foi utilizada, mostrando-se adequada para aprender as ndo linearidades do manipulador.
Experimentos computacionais com o controlador apresentado foram realizados utilizando o modelo
do robd UR10 no simulador V-REP. As simulacgdes incluiram a realizacdo da tarefa de regulacdo e
seguimento de trajetéria dos sinais senoidal e de multiplos degraus. Nos resultados simulados,
observou-se a estabilidade das varidveis de estado durante todo o tempo de simulacédo e a capacidade
de rastreamento dos sinais de referéncia, mesmo sem o conhecimento explicito da dindmica do

manipulador.
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