

**LARVICIDAL ACTIVITY AGAINST AEDES AEGYPTI AND ANTIOXIDANT,
CYTOTOXIC AND MICROBIOLOGICAL EVALUATION OF THE CRUDE
ETHANOLIC EXTRACT OF POGOSTEMON CABLIN BENTH**

**ATIVIDADE LARVICIDA CONTRA AEDES AEGYPTI E AVALIAÇÃO
ANTIOXIDANTE, CITOTÓXICA E MICROBIOLÓGICA DO EXTRATO
ETANÓLICO BRUTO DE POGOSTEMON CABLIN BENTH**

**ACTIVIDAD LARVICIDA CONTRA AEDES AEGYPTI Y EVALUACIÓN
ANTIOXIDANTE, CITOTÓXICA Y MICROBIOLÓGICA DEL EXTRACTO
ETANÓLICO CRUDO DE POGOSTEMON CABLIN BENTH**

10.56238/bocav25n74-016

**Lizandra Lima Santos¹, Rosany Lopes Martins², Heden Robson Monteiro Souza³,
Janaina Corrêa dos Santos⁴, Cristine Barbosa Malafaia⁵, Cleidjane Gomes Faustino⁶,
Fernando Antônio de Medeiros⁷, Ana Luzia Ferreira Farias⁸, Letícia Gomes de
Oliveira⁹, Edmilson dos Santos Moraes¹⁰, Camila Lima dos Santos¹¹, Sheylla Susan
Moreira da Silva de Almeida¹²**

ABSTRACT

The present work aimed to evaluate the larvicidal, antioxidant, microbiological and cytotoxicity activity of the crude ethanolic extract of *Pogostemon cablin* (Blanco) Benth leaves. The chemical characterization was performed through staining and staining reactions for the detection of secondary metabolite classes. The larvicidal activity against *Aedes aegypti* was carried out according to the protocol of the World Health Organization. The antioxidant activity was evaluated by the sequestering ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH). As for the microbiological evaluation, the microplate dilution technique was used against three bacteria, according to the protocol of the Clinical and Laboratory Standards Institute. *P. cablin* presented as classes of secondary metabolites: steroids and triterpenoids, depsides and depsidones, which in synergy with the other substances potentiated the

¹ Dr. in Pharmaceutical Innovation. Universidade Federal do Amapá. E-mail: lizandralasantos@gmail.com

² Dr. in Biodiversity and Biotechnology. Universidade Federal do Amapá. E-mail: rosyufpa@gmail.com

³ Graduated in Pharmacy. Instituto de Ensino Superior do Amapá. E-mail: heden.souza.02@gmail.com

⁴ Master's degree in Science in Health. Universidade Federal do Amapá. E-mail: janaina.correa.enfer@gmail.com

⁵ Graduated in Pharmacy. Instituto de Ensino Superior do Amapá. E-mail: cristimalafaia@gmail.com

⁶ Dr. in Pharmaceutical Innovation. Universidade Federal do Amapá. E-mail: cgf enfermagem@gmail.com

⁷ Dr. in Bioactive Natural and Synthetic Products. Universidade Federal do Paraíba.

E-mail: fernandomedeiros1973@gmail.com

⁸ Dr. in Biodiversity and Biotechnology. Universidade Federal do Amapá. E-mail: analuzia@yahoo.com.br

⁹ Nursing and health specialist. FAMEESP. E-mail: Leti.Oliveira1999@gmail.com

¹⁰ Master's degree in Science in Pharmaceutical Sciences. Universidade Federal do Amapá.
E-mail: morais28mcp@gmail.com

¹¹ Specialist in Methodology of Teaching Foreign Languages and Literatures in Spanish.

Universidade Federal do Amapá. E-mail: camilasntsri@gmail.com

¹² Dr. in Organic Chemistry. Universidade Federal de São Carlos. E-mail: Sheyllasusan@yahoo.com.br

larvicidal action of the species with an LC₅₀ of 63.91 µg·mL⁻¹ in 24 h. There was no antioxidant activity at the tested concentrations, however, it showed inhibition of bacterial growth against *E. coli* with MIC of 31.25 µg·mL⁻¹. The extract showed moderate toxic action with LC₅₀ of 257.93 µg·mL⁻¹. Therefore, the *P. cablin* species showed significant larvicidal potential, with bacteriostatic action, the absence of antioxidant action and moderate toxicity.

Keywords: Biocide. Patchouli. Lamiaceae. Vector Control. Oriza.

RESUMO

O presente trabalho teve como objetivo avaliar as atividades larvicida, antioxidante, microbiológica e de citotoxicidade do extrato etanólico bruto das folhas de *Pogostemon cablin* (Blanco) Benth. A caracterização química foi realizada por meio de reações de coloração e testes específicos para a detecção de classes de metabólitos secundários. A atividade larvicida contra *Aedes aegypti* foi conduzida de acordo com o protocolo da Organização Mundial da Saúde. A atividade antioxidante foi avaliada pela capacidade sequestradora do radical 2,2-difenil-1-picrilhidrazil (DPPH). Para a avaliação microbiológica, utilizou-se a técnica de diluição em microplacas contra três bactérias, conforme o protocolo do Clinical and Laboratory Standards Institute. *P. cablin* apresentou como classes de metabólitos secundários: esteroides e triterpenoides, depsídeos e depsidonas, os quais, em sinergia com outras substâncias, potencializaram a ação larvicida da espécie, com CL₅₀ de 63,91 µg·mL⁻¹ em 24 h. Não foi observada atividade antioxidante nas concentrações testadas; entretanto, verificou-se inibição do crescimento bacteriano contra *E. coli*, com CIM de 31,25 µg·mL⁻¹. O extrato apresentou ação tóxica moderada, com CL₅₀ de 257,93 µg·mL⁻¹. Assim, a espécie *P. cablin* demonstrou significativo potencial larvicida, ação bacteriostática, ausência de atividade antioxidante e toxicidade moderada.

Palavras-chave: Biocida. Patchouli. Lamiaceae. Controle de Vetores. Oriza.

RESUMEN

El presente trabajo tuvo como objetivo evaluar las actividades larvicida, antioxidante, microbiológica y de citotoxicidad del extracto etanólico crudo de las hojas de *Pogostemon cablin* (Blanco) Benth. La caracterización química se realizó mediante reacciones de coloración y pruebas específicas para la detección de clases de metabolitos secundarios. La actividad larvicida contra *Aedes aegypti* se llevó a cabo de acuerdo con el protocolo de la Organización Mundial de la Salud. La actividad antioxidante se evaluó mediante la capacidad secuestradora del radical 2,2-difenil-1-picrilhidrazilo (DPPH). Para la evaluación microbiológica se utilizó la técnica de dilución en microplacas frente a tres bacterias, conforme al protocolo del Clinical and Laboratory Standards Institute. *P. cablin* presentó como clases de metabolitos secundarios: esteroides y triterpenoides, depsídeos y depsidonas, los cuales, en sinergia con otras sustancias, potenciaron la acción larvicida de la especie, con una CL₅₀ de 63,91 µg·mL⁻¹ a las 24 h. No se observó actividad antioxidante en las concentraciones evaluadas; sin embargo, se evidenció inhibición del crecimiento bacteriano frente a *E. coli*, con una CIM de 31,25 µg·mL⁻¹. El extracto mostró una acción tóxica moderada, con una CL₅₀ de 257,93 µg·mL⁻¹. Por lo tanto, la especie *P. cablin* presentó un importante potencial larvicida, acción bacteriostática, ausencia de actividad antioxidante y toxicidad moderada.

Palabras clave: Biocida. Patchouli. Lamiaceae. Control de Vectores. Oriza.

1 INTRODUCTION

Liquid and solid synthetic insecticides are used in vector control of *A. aegypti*. They are generally accepted as effective, but they are carcinogenic, hazardous to the environment and non-target organisms. The compound N, N-diethyl-3-methylbenzamide, also known as DEET, is the product with significant insect repellency efficiency [1]. However, due to neurotoxicity allied to environmental claims, the population began to worry about its widespread use. [2, 3].

In the last years, the secondary metabolites found in plants have aroused researchers' interest to be used as alternatives to chemical insecticides [4-6]. In fact, insecticides of botanical origin have several advantages such as rapid action and degradation, low toxicity to mammals, greater selectivity and low phytotoxicity [5, 7].

The mosquito *A. aegypti* L. (Diptera: Culicidae) is the transmitter of dengue, yellow fever, Chikungunya, and Zika, which cause severe morbidity and mortality in humans [8-10]. The etiology of *A. aegypti* influences its wide dispersion, favored in urban environments, preferably in the domiciliary conditions offered by human's way of living. The presence of the breeding grounds in an environment of human conviviality favors the rapid proliferation of the species, due to two aspects: ideal breeding conditions and feeding sources [1].

The use of insecticides to control adult (adulticidal) and larval (larvical) mosquito populations can be done through focal and non-focal treatment by the aerospace spraying of ultra-low volume insecticides (UVB). Repellents can be applied to the individual's skin to repel mosquitoes and avoid stings [11].

However, there is increasing the resistance of mosquitoes to synthetic insecticides, as well as negative impacts on the environment. Thus, it is important to search for alternative methods to be used in the control of *A. aegypti*, which are efficient, low cost, biodegradable and more selective [12].

In this context, species of the Lamiaceae family present potential for obtaining essential oils and plant extracts, they have several biological functions used in the treatment of diseases in folk medicine, as well as reports of anti-influenza, insecticide, repellent, antibacterial and anti-intestinal parasite activities [13].

P. cablin is a species of the Lamiaceae family, popularly known as Oriza or Patchouli, traditionally used for medicinal purposes, especially for the treatment of nausea, headache and heart problems, as well as proven biological activities such as antioxidant, analgesic, anti-inflammatory, antiplatelet, antithrombotic, aphrodisiac, antidepressant, ant mutagenic, antiemetic, fibrinolytic and cytotoxic [14-17].

Considering the potentiality of species of the Lamiaceae family and the need for more studies aimed at solving public health problems, in particular, those caused by the *A. aegypti* vector, it is important to adopt alternative strategies with greater investments in appropriate methods. Thus, the present research had the objective of studying the larvicidal activity against *A. aegypti* of the crude ethanolic extract of *P. cablin* leaves. This also includes antioxidant, microbiological and cytotoxic activities, which will serve as a complementary study to evaluate the potentiality of the species for future formulation of a natural biocide.

2 MATERIAL AND METHODS

2.1 PLANT MATERIAL

The species *P. cablin* was collected in Fazendinha district ($0^{\circ} 01'08''S$ and $51^{\circ} 06'17''O$) in Macapá-Amapá Municipality, Brazil. For botanical identification, the sample of the species was sent to the Herbarium of the Institute of Scientific and Technological Research of the State of Amapá (IEPA), and it was registered under number 019183.

2.2 VEGETABLE EXTRACT

The leaves of *P. cablin* were oven dried at $50^{\circ}C$ for a period of 48 hours and manually ground (400g of the plant material). The plant material was placed in a suitable vessel and ethyl alcohol (96%) was added until complete submersion. Every 3 days, the ethanol extract was filtered and placed in a rotary vacuum evaporator (totaling three extractions), under the following conditions: temperature of $50^{\circ}C$ and pressure of 500 to 760mmHg [18].

2.3 QUALITATIVE PHYTOCHEMICAL ANALYSIS

The qualitative phytochemical analysis of crude ethanolic extract was performed according to Barbosa et al. [19], in which methods of precipitation and staining reactions were applied to for the detection of cardiac glycosides, catechins, flavonoids, purines, anthraquinones, steroids and triterpenoids, depsides and depsidones, polysaccharides, phenols and tannins, proteins and amino acids, alkaloids, reducing sugars, azulenes, organic acids, and saponins.

2.4 QUANTITATIVE PHYTOCHEMICAL ANALYSIS

2.4.1 Total phenolic content

The quantification of total phenolics was determined by the Folin-Ciocateu method, according to Amorim et al. [20], with modifications. An aqueous solution of gallic acid ($5000 \mu\text{g.mL}^{-1}$) was prepared for successive dilutions. Subsequently, the calibration curve was

carried out at concentrations of 10 to 500 $\mu\text{g.mL}^{-1}$ and 400 μL of Folin-Ciocateu (10%) aliquots were added to 1600 μL of Na_2CO_3 (75 g.L^{-1}). The mixture was incubated at 25 °C for 2 hours and the absorbance was measured in a spectrophotometer with a wavelength of 760 nm. After reading the calibration curve from the samples, an aqueous solution of extract (1 mg.mL^{-1}) was prepared with 200 μL added in a 10 mL flask, 400 μL of Folin-Ciocateu (10%) and 1600 μL Na_2CO_3 (75 g.L^{-1}), in triplicate, to quantify the total phenolic content. The results were expressed as mg equivalent of gallic acid per gram of extract (mg EAG/g).

2.5 LARVICIDAL ACTIVITY

The larvae of *A. aegypti* used in the bioassay were from the colony kept in the laboratory of the Medical Entomology of the Institute of Scientific and Technological Research of the State of Amapá (IEPA), where the larvicidal test was carried out. Biological assays were conducted under controlled climatic conditions with a temperature of 25±2 °C, relative humidity of 75±5 %, and a photoperiod of 12 h.

The methodology used followed the standard protocol of the World Health Organization [21] with modifications. The extract of *P. cablin* (0.09 g) was dissolved in 85.5 ml of distilled water and 4.5 mL of Tween 80. For the negative control, 1% Tween 80 and distilled water were used. As for the positive control, Malathion larvicide was used in commercial concentration. The extract solution was separated in triplicates at concentrations of 20 to 100 $\mu\text{g.mL}^{-1}$ in Becker of 100 mL, and 25 larvae of the *A. aegypti* mosquito in the 3rd young stage (L3) were added. After 24 and 48 hours, the dead larvae were counted, they being considered as such all those that were unable to reach the surface.

2.6 DETERMINATION OF ANTIOXIDANT ACTIVITY

The antioxidant activity was evaluated according to the methodology of Chen et al. [22] and Lopez-Lutz et al. [23] by the sequestering ability of 2,2-diphenyl-1-picrylhydrazyl (DPPH). The antioxidant activity was calculated [24] as follows:

$$(\%AA) = 100 - \{[(\text{Abs}_{\text{sample}} - \text{Abs}_{\text{white}})100]/\text{Abs}_{\text{control}}\}$$

%AA – percentage of antioxidant activity

$\text{Abs}_{\text{sample}}$ – Sample absorbance

$\text{Abs}_{\text{white}}$ – White absorbance

$\text{Abs}_{\text{control}}$ – Control absorbance

A methanolic solution of DPPH at the concentration of 40 $\mu\text{g.mL}^{-1}$ was prepared. The extract was diluted in methanol at different concentrations of 7.81 to 250 $\mu\text{g.mL}^{-1}$. Triplicates with 0.3 mL volume of the extract solution per tube were performed with 2.7 mL of the DPPH solution. In parallel, the negative control was prepared with 2.7 mL of methanol and 0.3 mL of the methanolic solution. For the positive control, ascorbic acid was used in the same conditions of preparation of extract. After 30 minutes of incubation at room temperature and protected from light, the absorbance was measured in a spectrophotometer (Biospectro SP-22) at wavelength 517 nm, in a quartz cuvette.

2.7 ANTIMICROBIAL ACTIVITY

2.7.1 Bacterial strains and culture conditions

Two gram-negative bacteria (*Pseudomonas aeruginosa* ATCC 25922 and *Escherichia coli* ATCC 8789) and gram-positive bacteria (*Staphylococcus aureus* ATCC 25922) were used in this bioassay.

A stock culture in BHI (Brain Heart Infusion) environment, with 20% glycerol-preserved at - 80 ° C was prepared for each microorganism. An aliquot of 50 μL of this culture was inoculated into 5 mL of sterile BHI broth environment and incubated for 24 hours at 37 ° C.

2.7.2 Determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)

The microplate dilution technique (96 wells) was used for determination of MIC and MBC, according to the protocol established by the Clinical and Laboratory Standards Institute [25], with adaptations.

Initially, the bacteria were reactivated with stock cultures and kept in BHI broth for 18 h at 37 ° C. The inoculum in 0.9% saline solution was prepared for each microorganism, adjusted for the McFarland 0.5 scale, followed by dilution in BHI and tested at 2 x 10⁶ CFU.mL⁻¹.

For MIC determination, the extract was diluted in Dimethyl sulfoxide (2% DMSO). The first well column of the plate was filled with 0.2 mL of the extract solution at the concentration of 2000 $\mu\text{g.mL}^{-1}$, the other wells were filled with 0.1 mL of 0.9% NaCl. Subsequently, base two serial dilutions were performed in the ratio of 1: 2 to 1: 128 until the dilution in a final volume of 0.1 mL. The cells (2 x 10⁶ CFU.mL⁻¹) with 0.1 mL adjusted according to the previous item were added to each well, resulting in a final volume of 0.2 mL. There were performed the control of the culture environment, the control of extract, and the negative control (DMSO 2%). For positive control, amoxicillin (50 $\mu\text{L.mL}^{-1}$) was used. The experiments

were carried out in triplicates. The microplates were incubated in an oven at 37 °C for 24 hours. After this time, the plates were read in ELISA reader (DO 630 nm).

The MBC was determined based on the results obtained in the MIC test. Microplate wells were replicated in Müller-Hinton agar and incubated at 37 °C for 24 h. MBC was established as the lowest extract concentration capable of completely inhibiting microbial growth in Petri dishes after 24-48 hours of growth.

The results were categorized in Microsoft Excel (Version 2010 for Windows) and then, analyzed in GraphPad Prism software (Version 6.0 for Windows, San Diego California USA). Significant differences between the groups were verified using the One-way ANOVA test with Bonferroni post-test, considering $p < 0.001$.

2.8 CYTOTOXIC ACTIVITY

The evaluation of the cytotoxic activity was performed against the larvae of *Artemia salina* Leach [26, 27] with adaptations. A solution of 250 mL of synthetic sea salt at 35 g.L⁻¹ was prepared, 25 mg of exposed saline eggs were incubated in 24 h photoperiod to reach the methanuplion stage. The stock solution was prepared to contain 0.06 g of extract, 28.5 mL of the solution of synthetic sea salt and 1.5 mL of Tween 80. Seven groups of samples were divided in triplicate in the concentrations of 50 to 1000 µg.mL⁻¹, and 10 methanuplii were added in each test tube. In the end, the number of non-survivors for LC₅₀ determination was counted using the SPSS® software PROBIT analysis.

2.9 STATISTICAL ANALYSIS

The data analysis was performed through analysis of variance (ANOVA) and the Tukey test, in the BioEstat program, in order to identify significant differences between the averages. The differences that presented probability levels less than and equal to 5% ($p \leq 0.05$) were considered statistically significant. The results were expressed as mean \pm standard deviation (SD). The LC₅₀ values were determined in the PROBIT regression, through the SPSS program (Statistical Package for the Social Sciences).

3 RESULTS

3.1 QUALITATIVE PHYTOCHEMICAL ANALYSIS

The phytochemical analysis of the extract of the leaves of *P. cablin* showed the presence of steroids and triterpenoids, depsides and depsidones, according to table 1.

Table 1*Identification of the secondary metabolites of the extract of *P. cablin**

Tests	Results
Cardiac glycosides	-
Catechins	-
Flavonoids	-
Sesquiterpenolactones and other lactones	-
Purines	-
Anthraquinones	-
Steroids and triterpenoids	+
Depsides e depsidones	+
Polysaccharides	-
Phenols and catheter tannins	-
Proteins and amino acids	-
Organic acids	-
Saponins	-
Azulenes	-
Alkaloids	-
Reducing sugars	-

Signal (+) indicates presence of secondary metabolite, while signal (-) indicates absence

The identification of steroids and triterpenoids is due to the result of the appearance of the staining that ranges from blue evanescence to persistent green, which occurs due to the loss of the hydroxyl that activates the conjugated system of the steroid nucleus [28]. While depsides are esters of two or more units of hydroxybenzoic acids, and depsidones are biogenetically derived from depsides through an intramolecular oxidative coupling [29], the positive result of this class is indicated by the appearance of green, blue or gray coloration.

3.2 QUANTITATIVE PHYTOCHEMICAL ANALYSIS

Table 2 shows the total phenolic content found in *P. cablin* leaves. The content of phenolic compounds was 4.02%, a relatively low result in which may be related to the absence of antioxidant activity.

Table 2*Total phenolics of extract from leaves of *P. cablin**

Ethanolic Extract	Phenolic compounds (mg GAE/g)	Phenolic compounds (%)
EE	40,27 µg/pipe	4,02

3.3 LARVICIDAL ACTIVITY

The extract of *P. cablin* presented expressive larvicidal action, with LC₅₀ of 63.91 µg.mL⁻¹ in 24 h, and LC₅₀ of 64.58 µg.mL⁻¹ in 48 h, with R² of 0.914. These did not present statistical difference between the 24 h and 48 h periods with p > 0.05, as shown in table 3.

Table 3*Percentage mortality (%) of *A. aegypti* larvae at different concentrations of *P. cablin* extract in two periods*

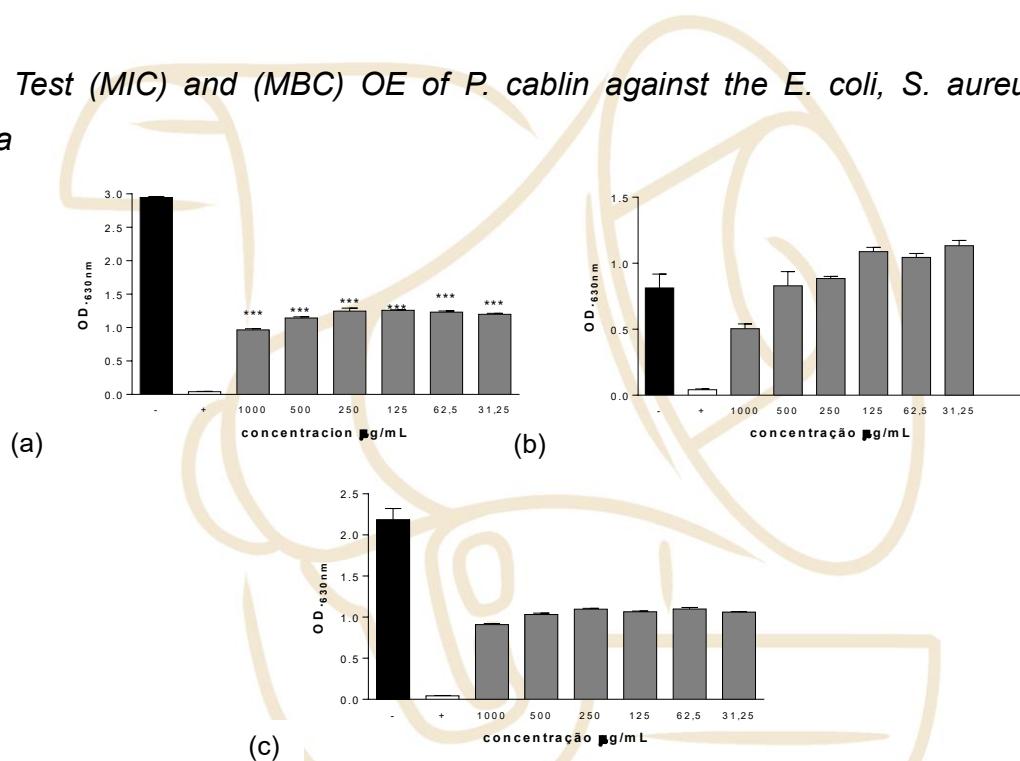
Concentrations (µg.mL ⁻¹)	Larvicidal activity (%)	
	24 h	48 h
20	0.0	0.0
40	4.0	4.0
60	52.0	54.0
80	78.66	78.66
100	80.0	81.33
Control (+)	100	100
Control (-)	0.0	0.0

3.4 ANTIOXIDANT ACTIVITY

In the evaluation of the antioxidant activity, the results showed the absence of this activity, since in the highest concentration (250 µg.mL⁻¹) the DPPH consumption was 24.52%, which was lower than the expected 50% of consumption, which caused a high IC₅₀ of 900.98 µg.mL⁻¹, according to table 4.

Table 4*Mean and standard deviation of the percentage of antioxidant activity of extracts of *P. cablin* in different concentrations.*

Concentrations (µg.mL ⁻¹)	% AA
7,81	14.29± 0.25
15,62	15.45± 0.73
31,25	17.80±0.83


62,5	18.24 \pm 0.62
125	20.5 \pm 0.29
250	24.52 \pm 0.42

3.5 ANTIMICROBIAL ACTIVITY

The antimicrobial activity showed that *P. cablin* extract had a better bacteriostatic potential against *E. coli* bacteria, with a MIC of 31.25 mg.mL⁻¹ than for *S. aureus* and *P. aeruginosa* bacteria. Regarding MBC, extract did not demonstrate bactericidal activity against the bacteria under test, according to Figure 1.

Figure 1

Sensitivity Test (MIC) and (MBC) OE of P. cablin against the E. coli, S. aureus and P. aeruginosa

MIC and MBC of the EO of *P. cablin* against (a) *E. coli*, (b) *S. aureus* and (c) *P. aeruginosa*
Source: Own author.
Substance test (—), BHI with 2% DMSO (+) and Aloxilone (—). * P < 0.01 statistically significant in relation to the negative control, # p < 0.001 statistically significant in relation to the positive control.

3.6 CYTOTOXIC ACTIVITY

In the evaluation of the cytotoxic activity, the extract of *P. cablin* presented moderate toxic action, with LC₅₀ of 257.93 and R² 0.981, p <0.00. Table 5 shows the mean mortality readings performed in the 24 hour extract exposure against *A. salina* larvae.

Table 5

Percentage of mortality of A. salina larvae of P. cablin extract in different concentrations

Concentrations (µg.mL ⁻¹)	Mortality (%)
50	10.0

100	23.3
250	56.6
500	63.3
750	76.6
1000	86.6

4 DISCUSSION

The study for the development of biocidal herbs against *A. aegypti* is recent, beginning in the 1980s, in order to isolate and characterize such bioactive substances. Many plant-based products have active compounds that act synergistically or in isolation, and they have characteristics that can be effective in controlling and monitoring mosquito populations [30].

The plants have mechanisms against insect action and are able to synthesize, from different metabolic pathways, defense compounds as secondary metabolites and proteins that act as insecticidal toxins [18].

In this context, the phytochemical tests performed with *P. cablin*'s extract, the classes of substances such as steroids and triterpenoids, depsids and depsidones showed positive results.

The identification of the steroids and triterpenoids is due to the result of the appearance of the coloration that goes from the blue evanescence to the persistent green, which occurs due to the loss of the hydroxyl that activates the conjugated system of the steroid nucleus in the reaction [31]. Steroids are derivatives of acetate, in which they act to reduce cholesterol absorption, reduce risks of cardiovascular diseases and inhibit the growth of malignant tumors [28]. The triterpenoids are a condensed compound derived from terpenoids and their biosynthetic source of isoprene. One of its main biological activities is the antispasmodic function, in which it has the function of relaxing the intestinal smooth muscle, reducing cramps [32].

In the staining reaction of depsides and depsidones, there was a positive result from the appearance of the greenish coloration. This class of metabolites consists of phenolic compounds of multiple properties such as antioxidant, antiviral, antibiotic, antitumor, allergen, inhibition of plant growth, anti-tuberculosis and enzyme inhibitory activity [33].

In the determination of the total phenolics, the extract of *P. cablin* presented 4.02%, a significantly low result, suggesting the absence of antioxidant activity, since the phenolic compounds present in the plants are related to the most abundant antioxidants. Therefore, the greater the number of phenolic compounds, the vegetable will have expressive antioxidant activity that contributes to the processes of inhibition of the risk of cardiovascular diseases and may act on oxidative stress, related to several chronic-degenerative

pathologies, such as diabetes, cancer and inflammatory processes [34]. Currently, there is a shortage of studies indicating the content of phenolic compounds in the extract of *P. cablin*.

Studies have proven the activity of plant extracts in the control of different species of mosquito [35-37], including *A. aegypti* [1,4, 8-10, 12,13,30]. These plants synthesize several types of compounds that have recognized entomotoxic potential and arouse the interest of several researchers in the search for alternative strategies for the chemical control of *A. aegypti* [18].

In this context, *P. cablin*'s extarct presented a significant larvicidal potential with LC₅₀ of 63.91 µg.mL⁻¹ in 24h, since samples with LC₅₀ below 100 µg.mL⁻¹ are considered to be good larvicidal agents [38]. The significant larvicidal activity may be related to the class of terpenes identified in the preliminary chemical test of this species, considering that biocidal studies of the *P. cablin* [39-42] species considered the sesquiterpenes (among them patchouli alcohol) as main responsible for their larvicidal potentiality.

It is important to emphasize that to relate larvicidal activity to some chemical compound is still a complex task, since the biological effect may reflect the action of the major component or is the result of the synergistic action of the constituents.

As for the antioxidant analysis, Nascimento et al. [43] emphasize that the antioxidant test sample that has high potential in sequestering free radicals has a low IC 50 value. Thus, from a small amount of sample, there is a decrease in the initial concentration of the DPPH radical by 50%, to inhibit the radical oxidation by 50%. In conclusion, the results observed in this study did not demonstrate antioxidant activity, since the IC₅₀ of the correlation between antioxidant activity (%) and the extract concentration was 900.98 µg.mL⁻¹ when compared to the standard of ascorbic acid (vitamin C) with IC₅₀ of 16.71 µg.mL⁻¹. These results are linked to the phytochemical profile of the species, in which Maqsood et al. [44] state that ketone or phenolic substances present in plants influence the antioxidant activity.

In this scenario of research related to the search of natural bioactive compounds, the use of new substances with antimicrobial activity has aroused the interest of the scientific community, because some bacteria have resistance to synthetic antibiotics [45]. Thus, drugs that are manufactured from natural compounds appear as a promising alternative for the effective treatment of infectious diseases.

The plant extracts have compounds with antimicrobial potential, they act with a mechanism of action on the bacteria interconnected to the disturbance of the cytoplasmic membrane, cytoplasmic coagulation, change in electron flow, disruption of proton power, alteration of active transport and reduction of intracellular ATP pool [46,47].

In this study, in the evaluation of the antimicrobial activity, the extract of *P. cablin* prevented the bacterial growth only against *E. coli* bacteria, with MIC 31.25 $\mu\text{g.mL}^{-1}$, and it showed no bactericidal activity. Liu et al. [48] found the anti-microbial activity of *P. cablin* extract against *Rhizopus nigricans*, demonstrating its efficacy against infectious microorganisms. However, there are limited reports on the potentiality of the microbial activity of *P. cablin* extract, instigating further studies to clarify such biological activity.

The evaluation of the toxicity of a plant species is an important bioassay to verify if it can be used as herbal medicine. In this context, the preliminary toxicological bioassay with *A. salina* allows evaluating if the effects that a compound produces in these microcrustaceans are applicable to humans. It is necessary to make only mathematical corrections to verify the appropriate dose per unit of the body surface since the toxic effects caused in laboratory animals are approximately similar to those caused in humans [49].

The extract of *P. cablin* presented moderate toxicity, according to the classification of Lopez-Lutz et. al [23], in which high toxicity is considered LC₅₀ values less than 100 $\mu\text{g.mL}^{-1}$, moderate toxicity between 100 and 500 $\mu\text{g.mL}^{-1}$, weak toxicity between 500 and 1000 $\mu\text{g.mL}^{-1}$, and LC₅₀ above 1000 $\mu\text{g.mL}^{-1}$ are considered to be non-toxic.

The level of toxicity of a plant species depends on the chemical compounds that constitute it. In the species *P. cablin* it is estimated that the toxicity is related to the class of terpenes identified in its composition [50]. However, the plant extract of *P. cablin* may be more toxic than its isolated compounds, since the synergy between the substances potentiated the significant toxic action.

5 CONCLUSION

The preliminary chemical composition of *P. cablin* extract indicated the presence of the following classes of secondary metabolites: steroids and triterpenoids, depsides and depsidones.

P. cablin's extract demonstrated significant larvicidal potential and low toxicity in the LC₅₀ found in this study, which can be used to control mosquito larvae without causing a cumulative effect in humans and the environment.

As for the antioxidant evaluation, there was no evidence of antioxidant activity by the DPPH radical capture method when compared to the vitamin C standard.

The antimicrobial activity showed that the extract of *P. cablin* presented a bacteriostatic action in the concentration of 31.25 mg.mL^{-1} only against *E. coli* bacteria.

The data show the relevance of the bioassays as a screening of the biological potential of the *P. cablin* species, as well as the importance of these products as a source of biocidal

compounds. Also noteworthy is the lack of studies related to the biocidal activities of *P. cablin*'s extract.

ACKNOWLEDGMENTS

Amapá Foundation for Research Support (FAPEAP). To the Research Program of SUS - PPSUS - Ministry of Health.

Coordination of Improvement of Higher Education Personnel (CAPES)/Ministry of Education (MEC).

National Council of Scientific and Technological Development - CNPQ.

To the Laboratory of Microbiology (LEMA) of UNIFAP under the responsibility of Prof. Aldo Proietti Aparecido Júnior.

Pro-rector of research and post-graduation - PROPESPG. Federal University of Amapá - UNIFAP.

To the Laboratory Adolpho Ducke under the responsibility of Eloise Andrade.

REFERENCES

1. Dennis, E.J.; Vosshall, L.B., 2018. DEET feet: *Aedes aegypti* mosquitoes use their tarsi to sense DEET on contact. *BioRxiv*. 1-14. <http://dx.doi.org/10.1101/360222>
2. Legeay, S.; Clere, N.; Apaire-Marchais, V.; Faure, S., 2018; Lapiède, B. Unusual modes of action of the repellent DEET in insects highlight some human side effects. *European Journal of Pharmacology*. 825, 92-98. <https://doi.org/10.1016/j.ejphar.2018.02.033>
3. Leageay, S. et al., 2016. The insect repellent *N,N*-diethyl-*m*-toluamide (DEET) induces angiogenesis via allosteric modulation of the M3 muscarinic receptor in endothelial cells. *Scientific Reports*. 6, 1-13. DOI: 10.1038/srep28546
4. Marques, A.M.; Kaplan, M.A.C., 2015. Metabolitos activos del género *Piper* contra *Aedes aegypti*: fuentes alternativas naturales para el control de vectores de dengue. *Universitas Scientiarum*. 20, 61-82. doi:10.11144/Javeriana.SC20-1.amgp
5. Galm, U.; Sparks, T.C., 2016. Natural product derived insecticides: discovery and development of spinetoram. *Journal of Industrial Microbiology & Biotechnology*. 43, 185-193. DOI 10.1007/s10295-015-1710-x
6. Bekele, D., 2018. Review on insecticidal and repellent activity of plant products for malaria mosquito control. *Biomedical Research and Reviews*. 2, 1-7. doi:10.15761/BRR.1000114
7. Zhu, F.; Lavine, L.; O'Neal, S.; Lavine, M.; Foss, C.; Walsh, D., 2016. Insecticide Resistance and Management Strategies in Urban Ecosystems. *Insects*. 2, 1-26. <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4808782/>

8. Kraemer, M.U.G. et al., 2015. The global compendium of *Aedes aegypti* and *Ae. albopictus* occurrence. *Scientific Data*. 2, 1-8. DOI: 10.1038/sdata.2015.35
9. Liu, Y. et al., 2017. Evolutionary enhancement of Zika virus infectivity in *Aedes aegypti* mosquitoes. *Nature*. 545, 482-498. doi:10.1038/nature22365
10. Drake, L.L., 2015. Functional characterization of aquaporins and aquaglyceroporins of the yellow fever mosquito, *Aedes aegypti*. *Scientific Reports*. 5, 1-7. DOI:10.1038/srep07795
11. Motta, S.; Monti, M., 2015. Insect Repellents. *European Handbook of Dermatological Treatments*. 1473–1479. doi:10.1007/978-3-662-45139-7_144
12. Vasantha-Srinivasan, P. et al., 2018. Toxicological effects of chemical constituents from *Piper* against the environmental burden *Aedes aegypti* Liston and their impact on non-target toxicity evaluation against biomonitoring aquatic insects. 25, 10434-10446. Doi:10.1007/s11356-017-9714-x
13. Ramos, R.S. et al., 2016. Chemical Study, antioxidant analysis and evaluation of the larvicidal potential against *Aedes aegypti* larvae of essential oil of *Ocimum basilicum* Linn. *European Journal of Medicinal Plants*. 11, 1-12. DOI: 10.9734/EJMP/2016/18230
14. Chakrapani, P. et al., 2013. Phytochemical, pharmacological importance of Patchouli (*Pogostemon cablin* (Blanco) Benth) an aromatic medicinal plant. *Int. J. Pharm. Sci. Res.* 21, 7–15. <http://globalresearchonline.net/journalcontents/v21-2/02.pdf>
15. Liu, X.R. et al., 2009. Study on antimicrobial activities of extracts from *Pogostemon cablin* (Blanco) Benth. *Food Sci. Technol.* 24, 220–227. http://en.cnki.com.cn/Article_en/CJFDTotal-SSPJ200905066.htm
16. Dongare, P. et al., 2014. A Review on *Pogostemon patchouli*. *Res. J. Pharmacognosy & Phytochem.* 691, 41–47. <https://search.proquest.com/openview/ef09ede1077a6fca8e287406f22fd5ad/1?pq-origsite=gscholar&cbl=1096443>
17. Beek, T.A.V.; Joulain, D., 2018. The essential oil of patchouli, *Pogostemon cablin*: A review. *Flavour Fragr J*. 33, 6–51. <https://doi.org/10.1002/ffj.3418>
18. Ramos, R.S. et al., 2014. Preliminary Study of the Extract of the Barks of *Licania macrophylla* Benth: Phytochemicals and Toxicological Aspects. *Biota Amazônia*. 94-99. <http://dx.doi.org/10.18561/2179-5746/biotaamazonia.v4n1p94-99>
19. Barbosa, W. L. R. et al., 2004. Manual para Análise Fitoquímica e Cromatográfica de Extratos Vegetais. *Revista Científica da UFPA*. 4, 1-19.
20. Amorim, E.L.C., 2008. A simple and accurate procedure for the determination of tannin and flavonoid levels and some applications in ethnobotany and ethnopharmacology. *Functional Ecosystems and Communities*. 2, 88-94. https://www.researchgate.net/profile/Tadeu_Sobrinho/publication/260191188
21. World Health Organization, 2005. *Guidelines for laboratory and field testing of mosquito larvicides*. Switzerland: Geneva, p. 1-39.
22. Chen, Z. et al., 2013. EC₅₀ estimation of antioxidant activity in DPPH assay using several statistical programs. *Food chemistry*. 138, p.414-420. <https://doi.org/10.1016/j.foodchem.2012.11.001>

23. Lopez-Lutz, D. et al., 2008. Screening of chemical composition, antimicrobial and antioxidant activities of *Artemisia* essential oil. *Phytochemistry*. 69, 1732-1738. <https://doi.org/10.1016/j.phytochem.2008.02.014>

24. Souza, C.R.F. et al., 2009. Antioxidant activity and physical-chemical properties of spray and spouted bed dried extracts of *Bauhinia forficata*. *Braz. J. Pharm. Sci.* 45, 209-218. <http://dx.doi.org/10.1590/S1984-82502009000200004>

25. Clinical and Laboratory Standards Institute, 2018. *Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically*, 11 th ed. Clinical and Laboratory Standards: Pennsylvania.

26. Araújo, M.G.F. et al., 2010. Structures of steroidal alkaloid oligoglycosides, robeneosides A and B, and antidiabetogenic constituents from the Brazilian medicinal plant *Solanum lycocarpum*. *Journal of Basic and Applied Pharmaceutical Sciences*. 31, 205-209. <https://www.researchgate.net/publication/49599620>

27. Milhem, M.M. et al., 2008. Toxicity Testing of Restorative Dental Materials Using Brine Shrimp Larvae (*Artemia salina*). *J. Appl. Oral Sci.* 18, 297-301. <http://www.scielo.br/pdf/jaos/v16n4/13.pdf>

28. Srinivasulu, N. et al., 2016. Screening, Determination of Phytoconstituents And Antimicrobial Activity of Different Solvent Extracts of Different Parts of *Achyranthes Aspera* on Human Pathogenic Bacteria. *Indo American Journal of Pharmaceutical Research*. 6, 1-11. <https://www.researchgate.net/publication/305494996>

29. Iqbal, E. et al., 2015. Phytochemical screening, total phenolics and antioxidant activities of bark and leaf extracts of *Goniothalamus velutinus* (Airy Shaw) from Brunei Darussalam. *Journal of King Saud University Science*. 27, 224-232. <https://doi.org/10.1016/j.jksus.2015.02.003>

30. Santana, H.T. et al., 2015. Essential oils of leaves of *Piper* species display larvicidal activity against the dengue vector, *Aedes aegypti* (Diptera: Culicidae). *Rev. Bras. Pl. Med.* 17, 105-111. http://dx.doi.org/10.1590/1983-084X/13_052

31. Nair, S.K.P. et al., 2016. Preliminary phytochemical screening of different solvent extracts of leaves of *Echeveria elegans* Rose, an endangered Mexican succulent herb. *Journal of Global Biosciences*. 5, 3429-3432. <https://www.mutagens.co.in/jgb/vol.05/1/050107.pdf>

32. Hussein, R.A.; El-Anssary, A.A., 2018. Plants Secondary Metabolites: The key drivers of the pharmacological actions of medicinal plants. *Herbal medicine*. 11-29. doi:10.5772/intechopen.76139

33. Shahidi, F.; Yeo, J., 2018. Bioactivities of Phenolics by Focusing on Suppression of Chronic Diseases: A Review. *Molecular Sciences*. 19, 1-16. <https://doi.org/10.3390/ijms19061573>

34. Elnour, A.A.M. et al., 2018. Challenges of Extraction Techniques of Natural Antioxidants and Their Potential Applications Opportunities as Anti-Cancer Agents. *Health Sci J.* 12, 1-25. [10.21767/1791-809X.1000596](https://doi.org/10.21767/1791-809X.1000596)

35. Liu, X.C. et al., 2015. Larvicidal activity of the essential oil from *Tetradium glabrifolium* fruits and its constituents against *Aedes albopictus*. *Pest. Manag. Sci.* 71, 1582-1586. <https://doi.org/10.1002/ps.3964>

36. Missah, B. Larvicidal and anti-plasmodial constituents of *Carapa procera* DC. (meliaceae) and *hyptis suaveolens* L. Poit (lamiaceae). MPhil Pharmacognosy's, Thesis, Faculty of Pharmacy and Pharmaceutical Sciences, Kumasi, 2014.

37. Boonyuan, W. et al., 2016. Excito-Repellent Responses between *Culex quinquefasciatus* Permethrin Susceptible and Resistant Mosquitoes. *Journal of Insect Behavior.* 29, 415-431. doi: <https://doi.org/10.1007/s10905-016-9570-4>

38. Cheng, S.S. et al., 2003. Bioactivity of selected plant essential oils against the yellow fever mosquito *Aedes aegypti* larvae. *Bioresource Technology.* 89, 99-102. [https://doi.org/10.1016/S0960-8524\(03\)00008-7](https://doi.org/10.1016/S0960-8524(03)00008-7)

39. Kusuma, H.S. Mahfud, M., 2017. Microwave-assisted Hydrodistillation for Extraction of Essential Oil from Patchouli (*Pogostemon cablin*) Leaves. *Period. Polytech. Chem.* 61, 82-92. <https://doi.org/10.3311/PPch.8676>

40. Murcia-Meseguer, A. et al., 2018. Insecticidal toxicity of thirteen commercial plant essential oils against *Spodoptera exigua* (Lepidoptera: Noctuidae). *Phytoparasitica.* 46, 233–245. <https://doi.org/10.1007/s12600-018-0655-9>

41. Silva-filho, S.E. et al., 2016. Effect of patchouli (*Pogostemon cablin*) essential oil on in vitro and in vivo leukocytes behavior in acute inflammatory response. *Biomed. Pharmacother.* 1-8. <https://doi.org/10.1016/j.biopha.2016.10.084>

42. Albuquerque, E.L.D. et al., 2013. Insecticidal and repellence activity of the essential oil of *Pogostemon cablin* against urban ants species. *Acta Tropica.* 127, 181–186. <https://doi.org/10.1016/j.actatropica.2013.04.011>

43. Tohidi, B.; Rahimmalek, M. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of *Thymus* species collected from different regions of Iran. *Food chemistry.* 220, 153-161. <https://doi.org/10.1016/j.foodchem.2016.09.203>

44. Maqsood, S. et al., 2014. Phenolic Compounds and Plant Phenolic Extracts as Natural Antioxidants in Prevention of Lipid Oxidation in Seafood: A Detailed Review. *Institute of food Technologists.* 13, 1125-1140. <https://doi.org/10.1111/1541-4337.12106>

45. Fair, R.J.; Tor, Y., 2014. Antibiotics and Bacterial Resistance in the 21st Century. *Perspect Medicin Chem.* 6, 25-64. <https://doi.org/10.4137/PMC.S14459>

46. Nazzaro, F. et al., 2013. Effect of Essential Oils on Pathogenic Bacteria. *Pharmacelticals.* 6, 1451-1474. <https://doi.org/10.3390/ph6121451>

47. Burt, S. Essential oils: their antibacterial properties and potential applications in foods--a review. *Inter. Jour. Food.* 94, 223-253. <https://doi.org/10.1016/j.ijfoodmicro.2004.03.022>

48. Liu, X. et al., 2009. Study on antimicrobial activities of extracts from *Pogostemon cablin* (Blanco) Benth. *Food Science and Technology.* 5, 1-8. http://en.cnki.com.cn/Article_en/CJFDTOTAL-SSPJ200905066.htm

49. Pereira, E.J.P. et al., 2018. Chemical Composition, cytotoxicity and larvicidal activity against *Aedes aegypti* of essential oils from *Vitex gardineriana* Schauer. *Bol. Latinoam Caribe Plant. Med. Aromat.* 17, 302-209. <http://revistas.usach.cl/ojs/index.php/blacpm/article/view/3501>

50. Swamy, M.K.; Sinniah, U.R.A., 2015. Comprehensive Review on the Phytochemical Constituents and Pharmacological Activities of *Pogostemon cablin* Benth.: An Aromatic Medicinal Plant of Industrial Importance. *Molecules.* 20, 8521-8547. <https://doi.org/10.3390/molecules20058521>