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Resumo 

Os polinômios constituem um dos pilares da educação matemática básica e avançada, sendo fundamentais tanto para a 

compreensão de funções quanto para o desenvolvimento do pensamento algébrico. Entre os diversos caminhos para o estudo de 

suas raízes, destacam-se as raízes enésimas, que permitem ao estudante visualizar propriedades estruturais dos polinômios e 

conectar conteúdos de Aritmética, Álgebra e Números Complexos. Neste trabalho, apresentamos um estudo acessível sobre 

raízes enésimas, raízes da unidade e raízes primitivas da unidade, utilizando a Fórmula de Moivre como ferramenta central. A 

partir dessa abordagem, buscamos ampliar a compreensão conceitual e visual dos estudantes sobre polinômios, reforçando 

conexões importantes frequentemente pouco exploradas no Ensino Médio. Por meio de exemplos geométricos e algébricos, 

evidenciamos como as raízes enésimas constituem uma estratégia eficiente e motivadora para o ensino de polinômios. 

Palavras-chave: Educação Matemática; Polinômios; Raízes Enésimas; Números Complexos; Ensino Médio. 

 

Abstract 

Polynomials are a central topic in both basic and advanced mathematics education, playing an essential role in the development 

of functional reasoning and algebraic thinking. Among the various approaches to studying their roots, nth roots stand out for 

enabling students to visualize structural properties of polynomials and to connect ideas from Arithmetic, Algebra, and Complex 

Numbers. In this paper, we present an accessible study of nth roots, roots of unity, and primitive roots of unity, using De Moivre’s 

Formula as a key tool. This approach aims to expand students’ conceptual and visual understanding of polynomials, 

strengthening important connections that are often underexplored in high school curricula. Through geometric and algebraic 

examples, we show that nth roots constitute an effective and motivating strategy for teaching polynomial structures. 

Keywords: Mathematics Education; Polynomials; Nth Roots; Complex Numbers; High School Instruction. 

 

1 INTRODUÇÃO 

Os polinômios, ou funções polinomiais, ocupam um lugar central na Matemática escolar e universitária, 

sendo estudados há séculos e desempenhando papel fundamental na construção do pensamento algébrico. Entre 

suas propriedades mais conhecidas estão a continuidade em todo o domínio, a simplicidade de suas derivadas 

— frequentemente apresentadas no ensino médio pela chamada “regra do tombo” — e a relativa facilidade de 

representação gráfica, que permite descrever retas, parábolas e curvas de maior complexidade (LIMA et al., 
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1997). Um dos principais objetivos no estudo dos polinômios consiste em determinar suas raízes, isto é, os 

valores para os quais o polinômio se anula. Do ponto de vista geométrico, quando essas raízes são reais, elas 

correspondem aos pontos de interseção do gráfico da função polinomial com o eixo das abscissas. 

Para além de seu interesse estritamente matemático, a investigação das raízes dos polinômios apresenta 

grande relevância didática. Em particular, o estudo das raízes enésimas oferece ao estudante a oportunidade de 

articular simultaneamente intuições algébricas e geométricas, aspecto essencial para uma aprendizagem 

significativa no Ensino Médio. Embora o ensino de polinômios permaneça um eixo estruturante da formação 

algébrica dos estudantes, observa-se que muitas de suas conexões conceituais, especialmente aquelas 

envolvendo números complexos, são frequentemente tratadas de forma fragmentada ou superficial (PONTE; 

QUARESMA; BRANCO, 2021). 

Nesse contexto, as raízes enésimas constituem um recurso didático potente, pois permitem introduzir e 

explorar propriedades estruturais dos polinômios por meio de representações geométricas simples no plano 

complexo. A Base Nacional Comum Curricular (BNCC) prevê o trabalho com números complexos no Ensino 

Médio (BRASIL, 2018); no entanto, a relação entre esses números e os polinômios raramente é explorada de 

maneira aprofundada, o que dificulta a construção de uma visão integrada dos conteúdos. Estratégias que 

favoreçam a visualização e a interpretação geométrica das raízes complexas mostram-se particularmente 

relevantes para superar essas dificuldades (BOGOMOLNY, 2020; SILVA; CARVALHO, 2021). 

Do ponto de vista matemático, é sabido que as raízes reais representam apenas uma parte do conjunto 

de raízes possíveis de um polinômio. As demais raízes, em geral complexas, admitem uma representação natural 

no plano complexo, no qual a parte real corresponde ao eixo das abscissas e a parte imaginária ao eixo das 

ordenadas. Nesse cenário, as raízes enésimas surgem como soluções de uma classe particular de polinômios da 

forma 𝑥𝑛 = 𝑧, em que 𝑧é um número complexo arbitrário. A partir da Fórmula de Moivre, obtém-se uma 

expressão explícita para essas raízes, permitindo não apenas sua determinação algébrica, mas também uma 

interpretação geométrica clara, como vértices de polígonos regulares inscritos em circunferências. 

Neste trabalho, apresentamos um estudo introdutório e acessível sobre raízes enésimas, raízes da 

unidade e raízes primitivas da unidade, enfatizando suas relações com o estudo de polinômios. Optamos por 

apresentar essas raízes explicitamente como soluções de equações polinomiais, de modo a reforçar a conexão 

entre a Álgebra dos polinômios e a teoria dos números complexos. Inicialmente, na Seção 1, revisamos 

conceitos fundamentais sobre polinômios e enunciamos resultados clássicos, como o Teorema Fundamental da 

Álgebra. Na Seção 2, desenvolvemos o estudo das raízes enésimas e de suas propriedades geométricas, 

incluindo os casos particulares das raízes da unidade e das raízes primitivas. Por fim, na Seção 3, retomamos o 

estudo dos polinômios, relacionando-o às raízes enésimas por meio de exemplos que evidenciam o potencial 

dessa abordagem tanto do ponto de vista matemático quanto didático. 
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2 POLINÔMIOS 

Para uma melhor formalização do estudo, vamos iniciar com uma definição formal de polinômios. 

Definição 1: O conjunto dos símbolos para algum 𝑛 inteiro não negativo 

𝑝(𝑥) = ∑ 𝑎𝑖𝑥
𝑖𝑛

𝑖=0 =  𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 +∙∙∙ +𝑎1𝑥 + 𝑎0              (1) 

 

é dito polinômio. Os números complexos 𝑎𝑖 são chamados coeficientes. 

Temos aqui polinômios como sendo o conjunto de determinados símbolos, este conjunto, como ressalta 

Lang (2002) não é o mesmo que as funções em uma variável “x” chamada de funções polinomiais amplamente 

estudadas no ensino escolar, já que a noção de polinômio é mais ampla que a de funções, sendo que polinômios 

podem ser, por exemplo, estendidos a outros corpos que não os dos números complexos. 

O inteiro não negativo 𝑛 é dito o grau de um polinômio não nulo quando 𝑎𝑛 é o maior coeficiente não 

nulo do polinômio, assim, um polinômio de grau zero é um número complexo, isto é, constante. Se 𝑝(𝑥) é um 

polinômio, o número 𝛼é uma raiz de 𝑝(𝑥) quando 𝑝(𝛼)  =  0, neste caso, dizemos que 𝛼 satisfaz (ou resolve) 

o polinômio 𝑝(𝑥). 

Outro conceito que será de grande valia é o de multiplicidade de uma raiz, para tanto, vamos a sua 

definição. 

Definição 2: O número natural 𝑚 é dito a multiplicidade da raiz 𝛼 do polinômio 𝑝(𝑥) se, e somente se, 

𝑝(𝑥) é fatorado como o produto 𝑝(𝑥)  =  (𝑥 − 𝛼)𝑚 ∙  𝑞(𝑥), em que 𝛼 não é raiz de 𝑞(𝑥). 

Quando 𝑚 >  1, dizemos que 𝛼 é uma raiz múltipla (ou de multiplicidade 𝑚). Quando nenhuma raiz 

de um polinômio possui multiplicidade maior que 1, temos que o polinômio se fatora em fatores lineares. 

Temos inúmeros resultados importantes sobre polinômios e suas raízes. Resultados estes que auxiliam 

na solução dos polinômios. Através da Fórmula Resolvente de uma equação do segundo grau, por exemplo, é 

possível encontrar as raízes de qualquer polinômio de grau 𝑛 =  2. Um resultado mais geral sobre o número 

de raízes de um polinômio é o 

Teorema Fundamental da Álgebra: Um polinômio de grau 𝑛 possui exatamente 𝑛 raízes complexas. 

É importante ressaltar que o Teorema Fundamental da Álgebra “conta” a multiplicidade das raízes 

separadamente. Por isso, o polinômio 𝑥𝑛 possui 𝛼 = 0 como a única raiz distinta, mas, por definição, 𝛼 = 0 é 

uma raiz de multiplicidade 𝑛, já que 𝑥𝑛  =  (𝑥 − 0)𝑛, isto é, o polinômio 𝑥𝑛 possui exatamente 𝑛 raízes iguais 

a 0. 

Ainda neste sentido, um outro resultado de grande importância para o estudo de polinômios é o fato de 

que se 𝑧 =  𝑎 +  𝑏𝑖, um número complexo, é raiz de um polinômio, o seu conjugado, 𝑧 =  𝑎 −  𝑏𝑖, também o 

é. Assim, se encontramos uma raiz complexa não real de um determinado polinômio, na prática encontramos 

duas raízes deste polinômio, ela própria e o seu conjugado. Considerando esse resultado, observamos que se 
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um polinômio possui grau ímpar, necessariamente ele terá pelo menos uma raiz real, tendo em vista que a 

quantidade de raízes complexas não real de um polinômio é par. Obviamente, por este resultado, não se pode 

fazer mais afirmações quanto a outras raízes. 

Com essas definições e resultados até aqui, faremos uma pausa no estudo de polinômios para nos 

dedicarmos um pouco ao estudo de raízes enésimas. Na seção 3 voltaremos ao estudo de polinômios 

relacionando-o com as raízes enésimas que veremos agora. 

 

3 RAÍZES ENÉSIMAS 

Para a dedução da fórmula para raízes enésimas é conveniente começarmos pela Fórmula de Moivre. 

Abraham de Moivre nasceu no dia 26 de maio de 1667 em Vitry, França, entre muitas de suas contribuições 

para a matemática, temos a Fórmula de Moivre para números complexo. Tomando 𝑧 um número complexo 

qualquer, ou seja, 𝑧 =  𝑎 +  𝑏𝑖 em que 𝑎 e 𝑏 são números reais e 𝑖2 = 1, por definição, ele é representado em 

sua forma polar por 𝑧 =  𝑟(𝑐𝑜𝑠 𝜃 + 𝑖𝑠𝑒𝑛 𝜃) em que 𝑟 =  |𝑧| e 𝜃 é o ângulo formado pelo vetor 𝑧 e a parte 

positiva do eixo das abscissas. Da representação polar de um número complexo, temos 

Fórmula de Moivre: 

(𝑐𝑜𝑠 𝜃 +  𝑖𝑠𝑒𝑛 𝜃)𝑛  =  𝑐𝑜𝑠 (𝑛𝜃) +  𝑖𝑠𝑒𝑛 (𝑛𝜃).              (2) 

 

A partir dessa fórmula será deduzia uma fórmula para se encontrar as raízes enésimas e 

consequentemente as raízes dos polinômios da forma 𝑥𝑛 − 𝑎, em que 𝑎 não é necessariamente um número real. 

Para tanto, devemos iniciar com a definição de raízes enésimas que é, de certa forma, bastante natural. 

Definição 3: Um número complexo 𝑧 é dito raiz enésima de um número complexo 𝑎 se, e somente se, 

𝑧𝑛 =  𝑎. 

Seja 𝑧 =  𝜌(𝑐𝑜𝑠 𝜃 +  𝑖𝑠𝑒𝑛 𝜃) e 𝑎 =  𝑟(𝑐𝑜𝑠𝜙 +  𝑖𝑠𝑒𝑛 𝜙) dois números complexos escritos em sua 

forma polar, fazendo uso da Fórmula de Moivre e aplicando a Definição 3, temos que 

𝜌𝑛(𝑐𝑜𝑠 𝜃 +  𝑖𝑠𝑒𝑛 𝜃)𝑛 =  𝜌𝑛(𝑐𝑜𝑠 𝑛𝜃 +  𝑖𝑠𝑒𝑛 𝑛𝜃)  =  𝑟(𝑐𝑜𝑠 𝜙 +  𝑖𝑠𝑒𝑛 𝜙), 

pela igualdade de dois números complexo – isto é, 𝑎 +  𝑏𝑖 =  𝑎′ +  𝑏′𝑖 se, e somente se, 𝑎 =  𝑎′ 

e 𝑏 =  𝑏′ –, encontramos 

𝜌𝑛  =  𝑟,                    (3) 

 

𝑐𝑜𝑠 𝑛𝜃 =  𝑐𝑜𝑠 𝜙,                    (4) 

 

sen nθ =  sen ϕ                        (5) 

 

e consequentemente temos que 
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nθ =  ϕ +  2kπ                                  (6) 

 

em que 𝑘 é um número inteiro 

Portanto, agora temos a fórmula da raiz enésima 

Z =  √𝑟
𝑛

(𝑐𝑜𝑠
ϕ + 2kπ

𝑛
+ 𝑖𝑠𝑒𝑛

ϕ + 2kπ

𝑛
)                       (7) 

 

A partir dessa fórmula, podemos observar que há exatamente 𝑛 raízes distintas, fazendo 𝑘 =

 0, 1, . . . , 𝑛 − 1, pois, ao tomar outro valor arbitrário para 𝑘, encontraremos algum 𝑧 obtido anteriormente a 

partir dos valores acima de 𝑘, devido a divisão de 𝑘 por 𝑛 na fórmula. Assim, temos que um número complexo 

𝑎 ≠ 0 possui 𝑛 raízes enésimas todas com o mesmo módulo 𝜌 =  √|𝑎|𝑛
.  Com esse fato, temos que, ao 

representar as raízes enésimas no plano complexo, elas são os vértices de um polígono regular de 𝑛 arestas 

inscrito em uma circunferência de raio 𝜌. Assim, temos que a distância entre duas raízes enésimas consecutivas 

é sempre a mesma. 

Exemplo 1: Para ilustrar, vamos procurar as raízes quádruplas de −16, ou seja, queremos encontrar 𝑧 

tal que 𝑧4 = −16. Em outras palavras, estamos interessados em encontrar as raízes do polinômio 𝑝(𝑥) =  𝑥4 +

16. 

Temos 𝜌 =  2, 𝜙 =  𝜋 (observe que −16 =  −16(𝑐𝑜𝑠 𝜋 +  𝑖𝑠𝑒𝑛 𝜋))2, portanto as raízes quádruplas 

de −16 são dadas por 

z𝑘 =  2  (𝑐𝑜𝑠
π + 2kπ

4
+  isen

π + 2kπ

4
),                          (8) 

 

em que  k =  0, 1, 2, 3. 

Substituindo os valores de 𝑘 e efetuando os cálculos algébricos, vemos que  

𝑧0  =  √2 +  𝑖√2, 𝑧1  =  −√2 + 𝑖√2, 𝑧2 = √2 −  𝑖√2  𝑒  𝑧3 = −√2 − 𝑖√2                  (9) 

 

são as quatro raízes quádruplas3 de −16 e, consequentemente, são as raízes de 𝑝(𝑥) =  𝑥4 + 16.  

  

 
2 O ângulo 𝜙 =  𝜋 é o ângulo entre o vetor −16 (representado no plano complexo) e o semieixo positivo das abscissas. Assim 

sendo, −16 se encontra no semieixo negativo das abscissas, então o ângulo 𝜙 é o ângulo entre a parte positiva e parte negativa 

do eixo 𝑂𝑥, isto é, 𝜙 =  𝜋. 
3 Observamos que, se tentássemos resolver 𝑝(𝑥) pelo método biquadrado (que será comentado em breve), teríamos que encontrar 

a raiz quadrada de 4𝑖 e encontrar as mesmas raízes, e, mesmo assim, teríamos que usar a fórmula que deduzimos aqui. 
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Figura 1 - Representação das raízes quádruplas de −16 no plano complexo 

 
Fonte: autoria própria. 

 

Na figura 1 temos a representação destas raízes no plano complexo, são elas, os vértices de um 

quadrilátero inscrito em uma circunferência de raio 2. 

 

3.1 RAÍZES ENÉSIMAS DA UNIDADE 

Em posse da definição de raízes enésimas, podemos particularizar este escopo para as raízes enésimas 

da unidade. Isto é, 

Definição 4: As raízes enésimas da unidade são os números complexos 𝑧 tais que a igualdade 𝑧𝑛 = 1. 

Ou seja, as raízes enésimas da unidade é o caso particular das raízes enésimas em que 𝑎 =  1. Assim, o 

ângulo 𝜙 assume valor zero, por 𝑎 = 1 se tratar de um número real positivo, e, para tanto, temos que 

𝑧 = 𝑧
2𝑘𝜋𝑖

𝑛 = 𝑐𝑜𝑠
2𝑘𝜋

𝑛
+ 𝑖𝑠𝑒𝑛

2𝑘𝜋

𝑛
,           (10) 

 

em que 𝑘 = 0, 1, … , 𝑛 − 1, são as 𝑛 raízes enésimas da unidade. Observe que 𝛼 = 1 é sempre uma raiz 

enésima da unidade, já que 1𝑛 = 1 para qualquer 𝑛 inteiro. 

Comumente, as raízes enésimas da unidade são denotadas pela letra grega 𝜔 e, por consequência, as 

raízes enésimas primitivas da unidade (como será visto na próxima seção) também são assim denotadas. 

Utilizando esta notação e utilizando a Fórmula de Moivre, temos que as raízes enésimas da unidade são dadas 

por 

1, 𝜔, 𝜔2, . . . , 𝜔𝑛−1.          (11) 

 

Consequentemente, representando essas raízes no plano complexo, temos que elas são os vértices de um 

polígono regular de 𝑛 lados inscrito numa circunferência de raio 1. Para melhor ilustrar essa situação, vamos 

ao próximo exemplo. 

Exemplo 2: Nossa intenção aqui é buscar as raízes óctuplas primitivas da unidade, ou seja, os valores 

de 𝑧 tais que a igualdade 𝑧8 = 1 seja válida. Utilizando a fórmula deduzida nesta seção, temos que 
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𝜔 = 𝜔
2𝜋𝑖

8 = 𝑐𝑜𝑠
𝜋

4
+ 𝑖𝑠𝑒𝑛

𝜋

4
=

√2+𝑖√2

2
                  (12) 

 

é uma raiz óctupla da unidade, e assim, as potências 

1, 𝜔, 𝜔2, . . . , 𝜔7                (13) 

 

são as 8 distintas raízes óctuplas primitivas da unidade. Na figura 2 temos a representação dessas raízes 

no plano complexo. São elas, os vértices do octógono regular inscrito na circunferência de raio 1. Vale ressaltar 

aqui que, para denotarmos uma raiz enésima da unidade por 𝜔, tomamos 𝑘, que a priori assume qualquer valor 

inteiro, fixo. 

 

Figura 2 - Representação das raízes óctuplas da unidade no plano complexo 

 
Fonte: autoria própria. 

 

Agora, fazendo um paralelo com o exemplo 1, temos que 

𝜔 = 𝜔
2𝜋𝑖

4 = 𝑐𝑜𝑠
𝜋

2
+ 𝑖𝑠𝑒𝑛

𝜋

2
= 𝑖               (13) 

 

é uma raiz quádrupla da unidade e, portanto, 

1, 𝜔, 𝜔2, 𝜔3                (14) 

 

são as 4 raízes quádruplas da unidade. Como 𝑧0 é uma raiz quádrupla de −16, temos que 

𝑧0, 𝑧0𝜔, 𝑧0𝜔2, 𝑧0𝜔3           (15)  

 

são as raízes quádruplas de  −16. A saber, 𝑧0𝜔 =  𝑧1, 𝑧0𝜔2  =  𝑧2, 𝑒 𝑧0𝜔3  =  𝑧3. 

A generalização desse fato é de fácil constatação, pois, se 𝑧 é uma raiz enésima de um número complexo 

𝑎, temos que, por definição, 𝑧𝑛 = 𝑎 e como as potências de 𝜔 são as raízes enésima da unidade, por definição, 

(𝜔𝑖)
𝑛  =  1 para 𝑖 =  0, . . . , 𝑛 − 1. Logo, (𝑧𝜔𝑖)

𝑛 =  𝑧𝑛(𝜔𝑖)
𝑛 =  𝑧𝑛 = 𝑎, ou seja, 𝑧𝜔𝑖 são as 𝑛 distintas raízes 

enésimas de 𝑎. 
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Contudo, devemos observar que se invés de 𝜔 tivéssemos tomado 𝜔2 para fazer o produto com 𝑧0, 

embora satisfeita a condição de (𝜔2)4 = 1, não conseguiríamos encontrar as raízes enésimas de  −16 devido 

ao fato de que (𝜔2)2 = 1, ou seja, existe 𝑡 <  𝑛 =  4 tal que (𝜔2)𝑡 = 1. Portanto, não podemos tomar 

aleatoriamente qualquer raiz enésima da unidade para esse processo. Na próxima seção veremos quais destas 

raízes podem ser utilizadas. 

Para finalizar esta seção, fazemos uma rápida observação quanto à representação das raízes quádruplas 

da unidade no plano complexo. Estas correspondem aos vértices do quadrado que estão localizados nos pontos 

(0, 1), (−1, 0), (0, −1) 𝑒 (1, 0). 

 

3.2 RAÍZES ENÉSIMAS PRIMITIVAS DA UNIDADE 

Um caso mais particular das raízes enésimas são as raízes enésimas primitivas da unidade. Como o 

próprio nome sugere, essas raízes constituem também um subconjunto das raízes enésimas da unidade. 

Definição 5: Uma raiz enésima da unidade 𝜔 é chamada de raiz enésima primitiva da unidade se 𝑛 é o 

menor inteiro positivo tal que 𝜔𝑛 = 1. 

Assim, para qualquer inteiro 𝑘, o número 

𝜔 = 𝑒
2𝜋𝑖𝑘

𝑛              (16) 

 

é uma raiz enésima primitiva da unidade se, e somente se, 𝜔𝑚 ≠ 1para todo 𝑚 < 𝑛. Em particular, 𝜔 =

𝑒
2𝜋𝑖

𝑛  é a primeira raiz enésima primitiva da unidade que ocorre quando percorremos o círculo unitário no sentido 

anti-horário a partir da unidade real (ÁVILA, 2008). 

Observando o caso das raízes quádruplas da unidade, temos que −1 e 𝑖 são raízes primitivas, enquanto 

1 não é uma raiz quádrupla primitiva da unidade, pois 11 = 1. De modo análogo, no caso das raízes óctuplas 

da unidade, verifica-se que algumas delas são primitivas, enquanto outras não o são. Esses exemplos iniciais 

ajudam a delinear a caracterização das raízes enésimas primitivas da unidade. 

Para aprofundar essa análise, consideremos o seguinte exemplo. 

Exemplo 3: Vamos encontrar as raízes quíntuplas da unidade. Para isso, tomamos 

𝜔 = 𝑒
2𝜋𝑖

5 ,          (17) 

 

que é uma raiz quíntupla da unidade. As potências 

𝜔, 𝜔2, 𝜔3, 𝜔4 e 𝜔5 = 1                     (18) 

 

correspondem às cinco raízes quíntuplas da unidade. Nesse caso, excetuando-se o número 1, que por 

definição não pode ser raiz primitiva, todas as demais raízes são primitivas. 
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A partir desse exemplo, podemos enunciar a caracterização geral das raízes enésimas primitivas da 

unidade. 

Teorema: Uma raiz enésima da unidade 𝜔 = 𝑒
2𝜋𝑖𝑘

𝑛  é primitiva se, e somente se, 𝑘 e 𝑛 são primos entre 

si. Consequentemente, se 𝑛 é primo, o número de raízes enésimas primitivas da unidade é exatamente 𝑛 − 1; 

caso contrário, esse número é menor que 𝑛 − 1. 

Como observado no caso das raízes quíntuplas da unidade, todas as raízes, exceto o próprio 1, são 

primitivas, totalizando quatro raízes primitivas. Já no caso das raízes óctuplas (ou quádruplas) da unidade, 

apenas aquelas para as quais 𝑘e 𝑛são coprimos são primitivas, e esse conjunto contém sempre mais de uma 

raiz. 

De fato, se 𝜔 é uma raiz enésima primitiva da unidade, então 𝜔𝑛 = 1 e 𝜔𝑚 ≠ 1 para todo inteiro 

positivo 𝑚 < 𝑛. Suponhamos, por contradição, que 𝑘e 𝑛não sejam primos entre si. Nesse caso, existe um 

divisor comum 𝑑 > 1 tal que 𝑘 = 𝑑𝑘′e 𝑛 = 𝑑𝑛′, o que implica 

𝜔𝑛′
= 𝑒

2𝜋𝑖𝑘′

𝑛′ = 1,             (19) 

 

contradizendo o fato de 𝜔 ser uma raiz primitiva. Portanto, 𝑘 e 𝑛 devem ser coprimos. A recíproca segue 

diretamente do fato de que, se não existe inteiro positivo 𝑚 < 𝑛 tal que 𝑚 seja múltiplo de 𝑛, então 𝜔𝑚 ≠ 1, o 

que garante que 𝜔 é uma raiz enésima primitiva da unidade. 

 

3.2.1 A função 𝝋 de Euler e as raízes enésimas primitivas da unidade 

A caracterização das raízes enésimas primitivas da unidade pode ser formulada de maneira mais precisa 

por meio da função 𝜑 de Euler. Recordemos que a função 𝜑: ℕ → ℕ, definida por Euler, associa a cada inteiro 

positivo 𝑛 o número de inteiros positivos menores ou iguais a 𝑛 que são coprimos com 𝑛. Em termos formais, 

𝜑(𝑛) = |{𝑘 ∈ ℕ ∣ 1 ≤ 𝑘 ≤ 𝑛 e gcd(𝑘, 𝑛) = 1}|.               (20) 

 

No contexto das raízes enésimas da unidade, essa função desempenha um papel central, pois o número 

de raízes enésimas primitivas da unidade é exatamente igual a 𝜑(𝑛). De fato, se denotarmos por 

𝜔𝑘 = 𝑒
2𝜋𝑖𝑘

𝑛 , 𝑘 = 0,1, … , 𝑛 − 1,           (21) 

 

as 𝑛raízes enésimas da unidade, então 𝜔𝑘 é uma raiz enésima primitiva se, e somente se, 𝑘 e 𝑛 são 

coprimos. Assim, a quantidade de raízes primitivas coincide precisamente com o número de inteiros 𝑘 nesse 

intervalo que satisfazem essa condição, o que justifica a igualdade entre o número de raízes primitivas e o valor 

de 𝜑(𝑛). 
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Essa relação fornece uma interpretação geométrica particularmente rica da função de Euler. Enquanto, 

em contextos elementares, a função 𝜑 é frequentemente apresentada apenas como uma função aritmética, no 

estudo das raízes enésimas primitivas ela adquire um significado geométrico claro: o valor de 𝜑(𝑛) corresponde 

ao número de vértices do polígono regular inscrito no círculo unitário que geram todas as demais raízes 

enésimas da unidade por meio de suas potências. 

Do ponto de vista didático, essa conexão é especialmente relevante, pois permite ao estudante visualizar 

uma função clássica da Teoria dos Números em um contexto algébrico e geométrico concreto. Além disso, essa 

abordagem antecipa ideias centrais da Álgebra Abstrata, como os polinômios ciclotômicos e a estrutura dos 

grupos cíclicos, evidenciando que conceitos aparentemente distintos podem ser compreendidos de forma 

integrada já em níveis introdutórios do ensino. 

 

4 POLINÔMIOS E AS RAÍZES ENÉSIMAS 

Com nosso estudo sobre as raízes enésimas, podemos voltar ao estudo de polinômios e relacioná-los. 

Como podemos perceber, as raízes enésimas são raízes de uma classe particular de polinômios, os polinômios 

da forma 𝑝(𝑥)  =  𝑥𝑛 − 𝑎, em que, fazendo um pequeno paralelo com a definição dada na primeira seção, 

temos 𝑎𝑛  =  1, 𝑎𝑛−1 =  𝑎𝑛−2 = ∙∙∙ =  𝑎1  =  0 e 𝑎0  =  𝑎. Observamos que em nossa definição, em acordo com 

Herstein (1975) e Hungerford (2012), por exemplo, os coeficientes 𝑎𝑖 devem ser números reais4, contudo, no 

estudo das raízes enésimas não é necessária esta particularidade, o coeficiente  𝑎0 =  𝑎 pode ser um número 

complexo qualquer. Como vimos no Exemplo 1, procurar as raízes quádruplas de −16 era equivalente a 

encontrar a solução do polinômio 𝑝(𝑥) = 𝑥4  +  16. 

Fazendo agora um paralelo com o Teorema Fundamental da Álgebra, podemos observar que após 

dedução da fórmula para encontrarmos as raízes enésimas chegamos ao mesmo resultado do Teorema, um 

polinômio de grau 𝑛 possui exatamente 𝑛 raízes, contudo, temos que para esta classe particular de polinômios 

as 𝑛 raízes são sempre distintas (para 𝑎 ≠ 0), ou seja, não admite multiplicidade maior que 1 e 

consequentemente o polinômio 𝑝(𝑥) = 𝑥𝑛 − 𝑎 é completamente fatorado em fatores lineares. 

Se 𝑎 for um número real não negativo, é fácil encontrar pelo menos uma raiz real do polinômio 𝑝(𝑥), 

contudo, com as raízes enésimas temos algumas estratégias para encontrar as demais raízes deste polinômio, 

inclusive para qualquer valor complexo de 𝑎, tendo assim, a solução para essa classe importante de polinômios. 

No exemplo 1, é utilizado, propositalmente, justamente o contrário desta observação (𝑎 <  0) e isto nos 

mostrou que não houve nenhuma raiz real; geometricamente, isto implica que o gráfico da função não intercepta 

 
4 Em textos como Lang (2002), o conceito de polinômios é mais geral, tendo os coeficientes em um anel qualquer, não 

necessariamente nos reais. Herstein (1975) e Hungerford (2012) generalizam a noção dada para polinômios ao longo de seus 

respectivos estudos, Herstein (1975) de maneira implícita e Hungerford (2012) de maneira bastante explícita. Contudo, a 

definição apresentada neste trabalho foi escolhida por este estudo não exigir conhecimentos avançados em Álgebra. 
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/ 

o eixo das abscissas. Obviamente, como vimos na seção 1, esse fato só ocorre quando 𝑛 é par! Tendo em vista 

que quando 𝑛 é ímpar, existe pelo menos uma raiz real e consequentemente o gráfico intercepta o eixo das 

abscissas pelo menos uma vez. 

O fato de que se 𝑎 <  0 não possuir raiz real (no caso dessa classe em específico) está intimamente 

ligado à definição dessa classe, pois tempos que tal classe é composta por polinômios mônicos. 

Definição 6: Um polinômio é dito mônico se, e somente se, o coeficiente 𝑎𝑛 for 1. 

O fato de os polinômios dessa classe serem mônicos garante que 𝑎𝑛  >  0 e como o grau do polinômio 

deve ser par, temos que a concavidade sempre será voltada para cima. Agora, temos que a concavidade é voltada 

para cima, 𝑎 <  0, consequentemente 𝑎0  >  0, vemos que o gráfico de 𝑥𝑛, que possui exatamente a raiz 0 de 

multiplicidade 𝑛, é transladado 𝑎0-unidades no eixo das ordenadas, ou seja, não há a possibilidade de interseção 

entre o gráfico e o eixo das abscissas, isto é, não há raízes reais. 

Obviamente, dependendo do valor de 𝑎, os procedimentos aqui estudados não são a maneira mais 

conveniente a ser trabalhada e é justamente aqui onde nos deparamos com uma das belezas da matemática: a 

variedade de métodos para se chegar à solução, dando assim a possibilidade para que o matemático decida qual 

o método mais eficiente para ele. 

Porém, temos mais que isso, seja 𝜔 ≠ 1 uma raiz enésima da unidade, temos que ela é raiz de 𝑝(𝑥) =

 𝑥𝑛−1 +∙∙∙ +𝑥2  + 𝑥 + 1, tendo em vista que podemos decompor 𝑥𝑛−1 =  (𝑥 − 1)(𝑥𝑛−1 + 𝑥𝑛−1  + ∙∙∙  + 𝑥 +

 1) e, como 𝜔 é uma raiz enésima da unidade, temos que o lado esquerdo da igualdade é igual a zero; por outro 

lado, 𝜔 − 1 =  0, logo, 𝜔 é raiz do segundo fator do lado direito da igualdade. Estes polinômios são chamados 

de ciclotômicos. 

Com o intuito de ampliar ainda mais a noção dos benefícios que temos ao estudar as raízes enésimas, 

vamos ao 

Exemplo 4: Nosso objetivo agora não é mais encontrar alguma raiz enésima, vamos encontrar agora as 

raízes de 𝑝(𝑥)  =  𝑥4 +  𝑥2  +  1. A priori, não temos como aplicar as raízes enésimas para encontrar as 

soluções de 𝑝(𝑥), mas podemos aplicar o método biquadrado e utilizar a igualdade 𝑦 =  𝑥2, logo 𝑝(𝑥)  =

 𝑝(𝑦)  =  𝑦2  +  𝑦 +  1, e temos, enfim, um polinômio de segundo grau que nos dá duas soluções para 𝑦, são 

elas: 

𝑦1 =  
−1+𝑖√3

2
 e 𝑦2 =

−1−𝑖√3

2
.               (22) 

 

Poderíamos voltar ao valor de 𝑦 e encontrar os quatro valores de 𝑥, contudo, se observarmos que 𝑦1  =

 𝜔3  (raiz tripla da unidade) teremos um resultado interessante: temos que 𝜔 é a raiz tripla primitiva da unidade, 

isto é, 𝜔3 = 1 e, ao mesmo tempo, é raiz de 𝑝(𝑦), ou seja, 𝑝(𝜔)  =  𝜔2 +  𝜔 +  1 =  0. As raízes de 𝑝(𝑥) são

 ±𝜔 e ±𝜔2. Isto é fácil de se verificar: (±𝜔)4  + (±𝜔)2 +  1 =  𝜔 +  𝜔2  +  1 =  0 e (±𝜔2)4 +
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(±𝜔2)2 +  1 =  𝜔2  +  𝜔 +  1 =  0. Com este exemplo, podemos ver que as raízes enésimas podem auxiliar-

nos na solução de polinômios que vão além dos polinômios da forma 𝑝(𝑥) = 𝑥𝑛  −  𝑎 e também mostra um 

pouco da importância das raízes enésimas para o estudo de polinômios. Em Álgebra, no estudo da Teoria de 

Galois, elas também desempenham, um papel de grande importância, principalmente ao relacionarmos elas 

com a função φ de Euler. 

 

4 CONCLUSÃO 

O estudo dos polinômios ocupa posição de destaque na Matemática escolar e universitária, tanto por sua 

relevância teórica quanto por seu papel formativo no desenvolvimento do pensamento algébrico. Entre os 

diversos resultados associados a esse tema, o Teorema Fundamental da Álgebra estabelece que todo polinômio 

de grau 𝑛admite exatamente 𝑛raízes complexas, contadas com suas multiplicidades. No caso particular dos 

polinômios da forma 𝑥𝑛 = 𝑧, o estudo das raízes enésimas permite ilustrar de maneira explícita esse resultado, 

evidenciando que tais polinômios possuem 𝑛raízes distintas, fato que decorre diretamente da expressão obtida 

a partir da Fórmula de Moivre. 

A dedução da fórmula das raízes enésimas não apenas fornece um método algébrico para a determinação 

dessas raízes, mas também possibilita uma interpretação geométrica clara no plano complexo. As raízes 

enésimas de um número complexo são representadas como os vértices de um polígono regular de 𝑛 lados 

inscrito em uma circunferência, o que evidencia propriedades como a igualdade das distâncias entre raízes 

consecutivas e a distribuição simétrica dessas soluções. Essa interpretação contribui significativamente para a 

compreensão conceitual das soluções complexas de equações polinomiais, frequentemente percebidas como 

abstratas pelos estudantes. 

Ao considerar as raízes da unidade e, de forma mais específica, as raízes enésimas primitivas da unidade, 

ampliam-se as possibilidades de aplicação desse estudo, tanto no contexto dos polinômios quanto em áreas mais 

avançadas da Matemática, como a Álgebra Abstrata e a Teoria de Galois. A caracterização das raízes primitivas, 

associada à coprimalidade entre os inteiros envolvidos, permite estabelecer conexões com a função 𝜑 de Euler 

e com os polinômios ciclotômicos, enriquecendo o panorama conceitual apresentado. 

Do ponto de vista didático, os exemplos discutidos ao longo do trabalho mostram que o estudo das raízes 

enésimas pode ser utilizado não apenas para resolver polinômios da forma 𝑥𝑛 = 𝑧, mas também como 

ferramenta auxiliar na análise de equações polinomiais mais gerais. Ainda que, em determinados casos, outros 

métodos sejam mais eficientes para a obtenção das raízes, a abordagem por meio das raízes enésimas destaca-

se por seu potencial formativo, ao articular álgebra, geometria e visualização no plano complexo. 

Diante do exposto, conclui-se que o estudo das raízes enésimas constitui uma ponte natural entre 

conteúdos tradicionalmente apresentados de forma fragmentada no Ensino Médio, favorecendo uma 

compreensão mais integrada dos polinômios e dos números complexos. Ao explorar simultaneamente aspectos 
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algébricos e geométricos, essa abordagem contribui para tornar o ensino de polinômios mais intuitivo, visual e 

conceitualmente consistente, além de oferecer ao professor um recurso didático valioso para enriquecer práticas 

pedagógicas e estimular investigações matemáticas em sala de aula. 
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