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Resumo

Os polindmios constituem um dos pilares da educacdo matemética basica e avancada, sendo fundamentais tanto para a
compreensdo de fungdes quanto para o desenvolvimento do pensamento algébrico. Entre os diversos caminhos para o estudo de
suas raizes, destacam-se as raizes enésimas, que permitem ao estudante visualizar propriedades estruturais dos polindmios e
conectar contetdos de Aritmética, Algebra e Nimeros Complexos. Neste trabalho, apresentamos um estudo acessivel sobre
raizes enésimas, raizes da unidade e raizes primitivas da unidade, utilizando a Férmula de Moivre como ferramenta central. A
partir dessa abordagem, buscamos ampliar a compreensdo conceitual e visual dos estudantes sobre polinémios, reforcando
conexdes importantes frequentemente pouco exploradas no Ensino Médio. Por meio de exemplos geométricos e algébricos,
evidenciamos como as raizes enésimas constituem uma estratégia eficiente e motivadora para o ensino de polinémios.

Palavras-chave: Educacdo Matematica; Polindmios; Raizes Enésimas; Nimeros Complexos; Ensino Médio.

Abstract

Polynomials are a central topic in both basic and advanced mathematics education, playing an essential role in the development
of functional reasoning and algebraic thinking. Among the various approaches to studying their roots, nth roots stand out for
enabling students to visualize structural properties of polynomials and to connect ideas from Arithmetic, Algebra, and Complex
Numbers. In this paper, we present an accessible study of nth roots, roots of unity, and primitive roots of unity, using De Moivre’s
Formula as a key tool. This approach aims to expand students’ conceptual and visual understanding of polynomials,
strengthening important connections that are often underexplored in high school curricula. Through geometric and algebraic
examples, we show that nth roots constitute an effective and motivating strategy for teaching polynomial structures.

Keywords: Mathematics Education; Polynomials; Nth Roots; Complex Numbers; High School Instruction.

1 INTRODUCAO

Os polindmios, ou funcdes polinomiais, ocupam um lugar central na Matematica escolar e universitaria,
sendo estudados ha séculos e desempenhando papel fundamental na construcéo do pensamento algébrico. Entre
suas propriedades mais conhecidas estdo a continuidade em todo o dominio, a simplicidade de suas derivadas
— frequentemente apresentadas no ensino médio pela chamada “regra do tombo” — e a relativa facilidade de

representacdo grafica, que permite descrever retas, parabolas e curvas de maior complexidade (LIMA et al.,
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1997). Um dos principais objetivos no estudo dos polindmios consiste em determinar suas raizes, isto é, 0s
valores para 0s quais o polindmio se anula. Do ponto de vista geométrico, quando essas raizes sdo reais, elas
correspondem aos pontos de intersecdo do grafico da funcdo polinomial com o eixo das abscissas.

Para além de seu interesse estritamente matematico, a investigacdo das raizes dos polindmios apresenta
grande relevancia didatica. Em particular, o estudo das raizes enésimas oferece ao estudante a oportunidade de
articular simultaneamente intuicfes algébricas e geométricas, aspecto essencial para uma aprendizagem
significativa no Ensino Médio. Embora o ensino de polindmios permaneca um eixo estruturante da formacéo
algébrica dos estudantes, observa-se que muitas de suas conexdes conceituais, especialmente aquelas
envolvendo numeros complexos, sdo frequentemente tratadas de forma fragmentada ou superficial (PONTE;
QUARESMA,; BRANCO, 2021).

Nesse contexto, as raizes enésimas constituem um recurso didatico potente, pois permitem introduzir e
explorar propriedades estruturais dos polindmios por meio de representacdes geométricas simples no plan
complexo. A Base Nacional Comum Curricular (BNCC) prevé o trabalho com nimeros complexos no Ensinb
Médio (BRASIL, 2018); no entanto, a relacdo entre esses nimeros e os polindbmios raramente é explorada de
maneira aprofundada, o que dificulta a constru¢cdo de uma visao integrada dos conteudos. Estratégias que
favorecam a visualizacdo e a interpretacdo geométrica das raizes complexas mostram-se particularmente
relevantes para superar essas dificuldades (BOGOMOLNY, 2020; SILVA; CARVALHO, 2021).

Do ponto de vista matematico, é sabido que as raizes reais representam apenas uma parte do conjunto
de raizes possiveis de um polinémio. As demais raizes, em geral complexas, admitem uma representacdo natural
no plano complexo, no qual a parte real corresponde ao eixo das abscissas e a parte imaginaria ao eixo das
ordenadas. Nesse cenario, as raizes enésimas surgem como solucdes de uma classe particular de polindmios da
forma x™ = z, em que zé um numero complexo arbitrario. A partir da Férmula de Moivre, obtém-se uma
expressao explicita para essas raizes, permitindo ndo apenas sua determinacdo algébrica, mas também uma
interpretacdo geométrica clara, como vértices de poligonos regulares inscritos em circunferéncias.

Neste trabalho, apresentamos um estudo introdutorio e acessivel sobre raizes enésimas, raizes da
unidade e raizes primitivas da unidade, enfatizando suas relagdes com o estudo de polindmios. Optamos por
apresentar essas raizes explicitamente como solugdes de equacdes polinomiais, de modo a reforcar a conexédo
entre a Algebra dos polindmios e a teoria dos nimeros complexos. Inicialmente, na Secdo 1, revisamos
conceitos fundamentais sobre polinbmios e enunciamos resultados classicos, como o Teorema Fundamental da
Algebra. Na Secdo 2, desenvolvemos o estudo das raizes enésimas e de suas propriedades geométricas,
incluindo os casos particulares das raizes da unidade e das raizes primitivas. Por fim, na Secdo 3, retomamos o
estudo dos polinémios, relacionando-o as raizes enésimas por meio de exemplos gque evidenciam o potencial

dessa abordagem tanto do ponto de vista matematico quanto didatico.
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2 POLINOMIOS
Para uma melhor formalizacéo do estudo, vamos iniciar com uma defini¢do formal de polinémios.
Defini¢éo 1: O conjunto dos simbolos para algum n inteiro ndo negativo

p(x) =¥ jaixt = apx™ + ap_1x™ 1+ +agx + aq (1)

é dito polindmio. Os numeros complexos a; sao chamados coeficientes.

Temos aqui polindmios como sendo o conjunto de determinados simbolos, este conjunto, como ressalta
Lang (2002) ndo ¢ o mesmo que as fungdes em uma variavel “x”” chamada de fun¢des polinomiais amplamente
estudadas no ensino escolar, ja que a nocao de polinémio é mais ampla que a de fun¢des, sendo que polindmios
podem ser, por exemplo, estendidos a outros corpos que ndo os dos nimeros complexos.

O inteiro ndo negativo n € dito o grau de um polinémio ndo nulo quando a,, € o maior coeficiente ndo
nulo do polindmio, assim, um polindmio de grau zero € um numero complexo, isto &, constante. Se p(x) é u
polinémio, 0 nimero aé uma raiz de p(x) quando p(a) = 0, neste caso, dizemos que «a satisfaz (ou resolvzn
0 polindmio p(x).

Outro conceito que sera de grande valia é o de multiplicidade de uma raiz, para tanto, vamos a sua
definicéo.

Definigdo 2: O numero natural m é dito a multiplicidade da raiz « do polinémio p(x) se, e somente se,
p(x) é fatorado como o produto p(x) = (x —a)™ - q(x), em que a ndo € raiz de q(x).

Quando m > 1, dizemos que a é uma raiz multipla (ou de multiplicidade m). Quando nenhuma raiz
de um polindmio possui multiplicidade maior que 1, temos que o polindmio se fatora em fatores lineares.

Temos inumeros resultados importantes sobre polindmios e suas raizes. Resultados estes que auxiliam
na solucdo dos polindmios. Através da Formula Resolvente de uma equacdo do segundo grau, por exemplo, é
possivel encontrar as raizes de qualquer polinémio de grau n = 2. Um resultado mais geral sobre 0 nimero
de raizes de um polinémio é o

Teorema Fundamental da Algebra: Um polindmio de grau n possui exatamente n raizes complexas.

E importante ressaltar que o Teorema Fundamental da Algebra “conta” a multiplicidade das raizes
separadamente. Por isso, o polindmio x™ possui @ = 0 como a Unica raiz distinta, mas, por defini¢cdo, a« = 0 €
uma raiz de multiplicidade n, ja que x™ = (x — 0)™, isto é, 0 polindmio x™ possui exatamente n raizes iguais
ao.

Ainda neste sentido, um outro resultado de grande importéncia para o estudo de polinémios €é o fato de
quese z = a + bi, um numero complexo, é raiz de um polinémio, o seu conjugado, z = a — bi, também o
é. Assim, se encontramos uma raiz complexa nao real de um determinado polinémio, na pratica encontramos

duas raizes deste polindbmio, ela propria e o seu conjugado. Considerando esse resultado, observamos que se
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um polindmio possui grau impar, necessariamente ele terd pelo menos uma raiz real, tendo em vista que a
quantidade de raizes complexas ndo real de um polinémio é par. Obviamente, por este resultado, ndo se pode
fazer mais afirmacgdes quanto a outras raizes.

Com essas defini¢cdes e resultados até aqui, faremos uma pausa no estudo de polindmios para nos
dedicarmos um pouco ao estudo de raizes enésimas. Na se¢do 3 voltaremos ao estudo de polinémios

relacionando-o0 com as raizes enésimas que veremaos agora.

3 RAIZES ENESIMAS

Para a deducdo da formula para raizes enésimas é conveniente comecarmos pela Formula de Moivre.
Abraham de Moivre nasceu no dia 26 de maio de 1667 em Vitry, Franca, entre muitas de suas contribui¢oes
para a matematica, temos a Férmula de Moivre para nimeros complexo. Tomando z um nimero complexo
qualquer, ou seja, z = a + bi em que a e b sdo nimeros reais e i = 1, por definicdo, ele é representado e
sua forma polar por z = r(cos 0 +isen ) em que r = |z| e 6 € 0 angulo formado pelo vetor z e a par’;b
positiva do eixo das abscissas. Da representacdo polar de um nimero complexo, temos

Formula de Moivre:

(cos 6 + isen 0)™ = cos (nf) + isen (nB). (2)

A partir dessa férmula serd deduzia uma formula para se encontrar as raizes enésimas e
consequentemente as raizes dos polinémios da forma x™ — a, em que a ndo € necessariamente um numero real.
Para tanto, devemos iniciar com a defini¢éo de raizes enésimas que é, de certa forma, bastante natural.

Definicao 3: Um nimero complexo z é dito raiz enésima de um nimero complexo a se, e somente se,
z" = a.

Sejaz = p(cos O + isen0) e a = r(cosp + isen ¢) dois nimeros complexos escritos em sua
forma polar, fazendo uso da Férmula de Moivre e aplicando a Definic¢éo 3, temos que

p"(cos B + isenB)n = p"(cosnb + isennf) = r(cos ¢ + isen @),
,

pela igualdade de dois nimeros complexo —isto é, a + bi = a’ + b'ise,esomentese,a = a

eb = b’ —, encontramos

pr =, 3)
cosnd = cos ¢, 4)
sennb = sen ¢ (5)

€ consequentemente temos que
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ne = ¢ + 2kn (6)

em que k € um numero inteiro

Portanto, agora temos a formula da raiz enésima

7 = W(cos¢+TZkR+isen¢+Tan) (7)

A partir dessa férmula, podemos observar que h& exatamente n raizes distintas, fazendo k =
0,1,...,n—1, pois, ao tomar outro valor arbitrario para k, encontraremos algum z obtido anteriormente a
partir dos valores acima de k, devido a divisdo de k por n na férmula. Assim, temos que um nimero complexo
a # 0 possui n raizes enésimas todas com o mesmo modulo p = W- Com esse fato, temos que, ao
representar as raizes enésimas no plano complexo, elas sdo os vértices de um poligono regular de n arestas
inscrito em uma circunferéncia de raio p. Assim, temos que a distancia entre duas raizes enésimas consecutiva°
é sempre a mesma.

Exemplo 1: Para ilustrar, vamos procurar as raizes quadruplas de —16, ou seja, queremos encontrar z
tal que z* = —16. Em outras palavras, estamos interessados em encontrar as raizes do polindmio p(x) = x* +
16.

Temos p = 2, ¢ = m (observe que —16 = —16(cos w + isen m))?, portanto as raizes quadruplas

de —16 sdo dadas por

Zy = 2 (cos

T + 2km . ™+ Zk‘l'[)
)

+ isen (8)

emque k = 0,1,2,3.
Substituindo os valores de k e efetuando os célculos algébricos, vemos que

Zo = V2 + V2, zg = —V2+iV2, 2, =V2 — iV2 e z3=—/2—-iV2 9)

sdo as quatro raizes quadruplas® de —16 e, consequentemente, sio as raizes de p(x) = x* + 16.

20 angulo ¢ = m é o angulo entre o vetor —16 (representado no plano complexo) e o0 semieixo positivo das abscissas. Assim
sendo, —16 se encontra no semieixo negativo das abscissas, entdo o angulo ¢ é o angulo entre a parte positiva e parte negativa
do eixo Ox, isto é, ¢ = m.

3 Observamos que, se tentassemos resolver p(x) pelo método biquadrado (que sera comentado em breve), teriamos que encontrar
araiz quadrada de 4i e encontrar as mesmas raizes, e, mesmo assim, teriamos que usar a formula que deduzimos aqui.
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Figura 1 - Representacéo das raizes quadruplas de —16 no plano complexo

~.

/
~_| “

Fonte: autoria propria.

Na figura 1 temos a representacdo destas raizes no plano complexo, sdo elas, os vértices de um

quadrilatero inscrito em uma circunferéncia de raio 2.

3.1 RAIZES ENESIMAS DA UNIDADE
Em posse da definicdo de raizes enésimas, podemos particularizar este escopo para as raizes enésimas
da unidade. Isto é,
Definicao 4: As raizes enésimas da unidade s&o os nimeros complexos z tais que a igualdade z™ = 1.
Ou seja, as raizes enésimas da unidade é o caso particular das raizes enésimasem que a = 1. Assim, 0

angulo ¢ assume valor zero, por a = 1 se tratar de um nimero real positivo, e, para tanto, temos que

2kmi
2km . 2km
z=zn =cos— +isen—, (10)

emquek =0,1,..,n— 1, sd0 as n raizes enésimas da unidade. Observe que a = 1 é sempre uma raiz
enésima da unidade, ja que 1™ = 1 para qualquer n inteiro.

Comumente, as raizes enésimas da unidade sdo denotadas pela letra grega w e, por consequéncia, as
raizes enésimas primitivas da unidade (como sera visto na proxima secdo) também sdo assim denotadas.
Utilizando esta notacao e utilizando a Férmula de Moivre, temos que as raizes enésimas da unidade sdo dadas
por

1, w, w?,..., 0" L (11)

Consequentemente, representando essas raizes no plano complexo, temos que elas sao os vértices de um
poligono regular de n lados inscrito numa circunferéncia de raio 1. Para melhor ilustrar essa situagdo, vamos
ao proximo exemplo.

Exemplo 2: Nossa intengdo aqui € buscar as raizes octuplas primitivas da unidade, ou seja, os valores

de z tais que a igualdade z® = 1 seja valida. Utilizando a formula deduzida nesta secéo, temos que
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21l ,
cm T T N2+iV2
w=ws =cos_ +isen_=— (12)

é uma raiz octupla da unidade, e assim, as poténcias
1, w, w?..., o’ (13)

sdo as 8 distintas raizes octuplas primitivas da unidade. Na figura 2 temos a representacao dessas raizes
no plano complexo. S&o elas, os Vvértices do octdgono regular inscrito na circunferéncia de raio 1. Vale ressaltar
aqui que, para denotarmos uma raiz enésima da unidade por w, tomamos k, que a priori assume qualquer valor

inteiro, fixo.

Figura 2 - Representacdo das raizes octuplas da unidade no plano complexo

—
P

Fonte: autoria prépria.

Agora, fazendo um paralelo com o exemplo 1, temos que

2mi

_— T . 3 :
w=w+ =cos-+isen_ =1 (13)

¢ uma raiz quédrupla da unidade e, portanto,
1, w, w2, w3 (14)

sd0 as 4 raizes quadruplas da unidade. Como z, é uma raiz quadrupla de —16, temos que

Zg, ZoW, Zgw?, Zyw® (15)

s80 as raizes quadruplas de —16. A saber, zyw = z;,zyw, = z,,e Zyw; = Z3.

A generalizacdo desse fato é de facil constatacao, pois, se z € uma raiz enesima de um nimero complexo
a, temos que, por definicdo, z™ = a e como as poténcias de w sdo as raizes enésima da unidade, por definicéo,
(w)™ = 1parai = 0,...,n—1.Logo, (zw;)" = z™"(w;)" = z" = a, ou Seja, zw; S0 as n distintas raizes

enésimas de a.
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Contudo, devemos observar que se invés de w tivéssemos tomado w? para fazer o produto com z,
embora satisfeita a condicdo de (w?)* = 1, ndo conseguiriamos encontrar as raizes enésimas de —16 devido
ao fato de que (w?)? =1, ou seja, existe t < n = 4 tal que (w?)* = 1. Portanto, ndo podemos tomar
aleatoriamente qualquer raiz enésima da unidade para esse processo. Na proxima secdo veremos quais destas
raizes podem ser utilizadas.

Para finalizar esta secdo, fazemos uma réapida observagdo quanto a representacdo das raizes quadruplas
da unidade no plano complexo. Estas correspondem aos vértices do quadrado que estéo localizados nos pontos
(0,1),(~1,0),(0,—1) e (1,0).

3.2 RAIZES ENESIMAS PRIMITIVAS DA UNIDADE

Um caso mais particular das raizes enésimas sdo as raizes enésimas primitivas da unidade. Como o
proprio nome sugere, essas raizes constituem também um subconjunto das raizes enésimas da unidade.

Definicédo 5: Uma raiz enésima da unidade w é chamada de raiz enésima primitiva da unidade se n é f°
menor inteiro positivo tal que w™ = 1.

Assim, para qualquer inteiro k, o nimero

2mik

w=en (16)

€ uma raiz enésima primitiva da unidade se, e somente se, @™ # 1paratodo m < n. Em particular, o =

2mi

e n €aprimeiraraiz enésima primitiva da unidade que ocorre quando percorremos o circulo unitario no sentido
anti-horario a partir da unidade real (AVILA, 2008).

Observando o caso das raizes quadruplas da unidade, temos que —1 e i sdo raizes primitivas, enquanto
1 ndo é uma raiz quadrupla primitiva da unidade, pois 1 = 1. De modo analogo, no caso das raizes 6ctuplas
da unidade, verifica-se que algumas delas sdo primitivas, enquanto outras ndo o séo. Esses exemplos iniciais
ajudam a delinear a caracterizacao das raizes enésimas primitivas da unidade.

Para aprofundar essa analise, consideremos o seguinte exemplo.

Exemplo 3: Vamos encontrar as raizes quintuplas da unidade. Para isso, tomamos

2mi

w=es, (17)

gue é uma raiz quintupla da unidade. As poténcias

W, w?, w3, w*ew® = (18)

correspondem as cinco raizes quintuplas da unidade. Nesse caso, excetuando-se o numero 1, que por

definicdo ndo pode ser raiz primitiva, todas as demais raizes sdo primitivas.

BOLETIM DE CONJUNTURA (BOCA) ano VI, vol. 24, n. 73, Edi¢do Especial, Boa Vista, 2025



BOLETIM DE CONJUNTURA

A partir desse exemplo, podemos enunciar a caracterizagdo geral das raizes enésimas primitivas da

unidade.

2mik

Teorema: Uma raiz enésima da unidade w = e = & primitiva se, e somente se, k e n sdo primos entre
si. Consequentemente, se n é primo, o nimero de raizes enésimas primitivas da unidade é exatamente n — 1;
caso contrario, esse niumero é menor que n — 1.

Como observado no caso das raizes quintuplas da unidade, todas as raizes, exceto o préprio 1, séo
primitivas, totalizando quatro raizes primitivas. Ja no caso das raizes octuplas (ou quadruplas) da unidade,
apenas aquelas para as quais ke nsdo coprimos sdo primitivas, e esse conjunto contém sempre mais de uma
raiz.

De fato, se w é uma raiz enésima primitiva da unidade, entdo w™ =1 e w™ # 1 para todo inteiro

positivo m < n. Suponhamos, por contradi¢do, que ke nndo sejam primos entre si. Nesse caso, existe um

divisor comum d > 1 tal que k = dk'e n = dn’, o que implica °
, 2mik’
w" =e W =1, (19)

contradizendo o fato de w ser uma raiz primitiva. Portanto, k e n devem ser coprimos. A reciproca segue
diretamente do fato de que, se ndo existe inteiro positivo m < n tal que m seja multiplo de n, entdo w™ # 1,0

que garante que w € uma raiz enésima primitiva da unidade.

3.2.1 A funcéo ¢ de Euler e as raizes enésimas primitivas da unidade

A caracterizacdo das raizes enésimas primitivas da unidade pode ser formulada de maneira mais precisa
por meio da funcdo ¢ de Euler. Recordemos que a funcdo ¢: N — N, definida por Euler, associa a cada inteiro
positivo n 0 numero de inteiros positivos menores ou iguais a n que sdo coprimos com n. Em termos formais,
pn) ={keN|1<k<ne gcd(k,n) =1} (20)

No contexto das raizes enésimas da unidade, essa funcdo desempenha um papel central, pois 0 nimero

de raizes enésimas primitivas da unidade é exatamente igual a ¢ (n). De fato, se denotarmos por

2mik

wy=en , k=01,..,n—1, (21)

as nraizes enésimas da unidade, entdo w; € uma raiz enésima primitiva se, e somente se, k € n sdo
coprimos. Assim, a quantidade de raizes primitivas coincide precisamente com o nimero de inteiros k nesse

intervalo que satisfazem essa condig&o, o que justifica a igualdade entre o nUmero de raizes primitivas e o valor

de p(n).
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Essa relagdo fornece uma interpretagdo geométrica particularmente rica da funcéo de Euler. Enquanto,
em contextos elementares, a funcédo ¢ é frequentemente apresentada apenas como uma funcao aritmética, no
estudo das raizes enésimas primitivas ela adquire um significado geométrico claro: o valor de ¢ (n) corresponde
ao numero de vértices do poligono regular inscrito no circulo unitario que geram todas as demais raizes
enésimas da unidade por meio de suas poténcias.

Do ponto de vista didatico, essa conexao € especialmente relevante, pois permite ao estudante visualizar
uma funcéo classica da Teoria dos Numeros em um contexto algébrico e geométrico concreto. Além disso, essa
abordagem antecipa ideias centrais da Algebra Abstrata, como os polindmios ciclotomicos e a estrutura dos
grupos ciclicos, evidenciando que conceitos aparentemente distintos podem ser compreendidos de forma

integrada ja em niveis introdutdrios do ensino.

4 POLINOMIOS E AS RAIZES ENESIMAS

Com nosso estudo sobre as raizes enésimas, podemos voltar ao estudo de polindbmios e reIacioné-Ios@
Como podemos perceber, as raizes enésimas sdo raizes de uma classe particular de polinémios, os polindmios
da forma p(x) = x™ — a, em que, fazendo um pequeno paralelo com a definicdo dada na primeira secéo,
temosa, = 1,a,_1 = a,_, == a; = 0ea, = a.Observamos que em nossa defini¢cdo, em acordo com
Herstein (1975) e Hungerford (2012), por exemplo, os coeficientes a; devem ser niimeros reais®, contudo, no
estudo das raizes enésimas nao € necessaria esta particularidade, o coeficiente a, = a pode ser um ndmero
complexo qualquer. Como vimos no Exemplo 1, procurar as raizes quadruplas de —16 era equivalente a
encontrar a solugdo do polindmio p(x) = x* + 16.

Fazendo agora um paralelo com o Teorema Fundamental da Algebra, podemos observar que ap6s
deducdo da formula para encontrarmos as raizes enésimas chegamos ao mesmo resultado do Teorema, um
polinémio de grau n possui exatamente n raizes, contudo, temos que para esta classe particular de polinémios
as n raizes sdo sempre distintas (para a # 0), ou seja, ndo admite multiplicidade maior que 1 e
consequentemente o polinémio p(x) = x™ — a é completamente fatorado em fatores lineares.

Se a for um numero real ndo negativo, é facil encontrar pelo menos uma raiz real do polinémio p(x),
contudo, com as raizes enésimas temos algumas estratégias para encontrar as demais raizes deste polinémio,
inclusive para qualquer valor complexo de a, tendo assim, a solugdo para essa classe importante de polindbmios.
No exemplo 1, e utilizado, propositalmente, justamente o contrario desta observacdo (a < 0) e isto nos

mostrou que ndo houve nenhuma raiz real; geometricamente, isto implica que o grafico da funcéo ndo intercepta

4 Em textos como Lang (2002), o conceito de polindmios é mais geral, tendo os coeficientes em um anel qualquer, ndo
necessariamente nos reais. Herstein (1975) e Hungerford (2012) generalizam a nocdo dada para polinémios ao longo de seus
respectivos estudos, Herstein (1975) de maneira implicita e Hungerford (2012) de maneira bastante explicita. Contudo, a
definicdo apresentada neste trabalho foi escolhida por este estudo ndo exigir conhecimentos avancados em Algebra.
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0 eixo das abscissas. Obviamente, como vimos na se¢éo 1, esse fato sé ocorre quando n é par! Tendo em vista
que quando n é impar, existe pelo menos uma raiz real e consequentemente o grafico intercepta o eixo das
abscissas pelo menos uma vez.

O fato de que se a < 0 ndo possuir raiz real (no caso dessa classe em especifico) estd intimamente
ligado a definigdo dessa classe, pois tempos que tal classe € composta por polindmios monicos.

Defini¢éo 6: Um polindémio é dito monico se, e somente se, o coeficiente a,, for 1.

O fato de os polinémios dessa classe serem ménicos garante que a,, > 0 e como o grau do polindbmio
deve ser par, temos que a concavidade sempre sera voltada para cima. Agora, temos que a concavidade € voltada
para cima, a < 0, consequentemente a, > 0, vemos que o grafico de x™, que possui exatamente a raiz 0 de
multiplicidade n, € transladado a,-unidades no eixo das ordenadas, ou seja, ndo ha a possibilidade de interse¢édo
entre o grafico e 0 eixo das abscissas, isto €, ndo ha raizes reais.

Obviamente, dependendo do valor de a, os procedimentos aqui estudados ndo sdo a maneira main
conveniente a ser trabalhada e é justamente aqui onde nos deparamos com uma das belezas da matematica:
variedade de métodos para se chegar a solugdo, dando assim a possibilidade para que o matematico decida qual
0 método mais eficiente para ele.

Porém, temos mais que isso, seja w # 1 uma raiz enésima da unidade, temos que ela é raiz de p(x) =
x™ 1 4o +x2% + x + 1, tendo em vista que podemos decompor x™* 1 = (x — DT+ x"t + - +x +

1) e, como w é uma raiz enésima da unidade, temos que o lado esquerdo da igualdade é igual a zero; por outro
lado,w — 1 = 0, logo, w é raiz do segundo fator do lado direito da igualdade. Estes polinbmios sdo chamados
de ciclotémicos.

Com o intuito de ampliar ainda mais a no¢do dos beneficios que temos ao estudar as raizes enésimas,
vamos ao

Exemplo 4: Nosso objetivo agora ndo € mais encontrar alguma raiz enésima, vamos encontrar agora as
raizes de p(x) = x*+ x? + 1. A priori, ndo temos como aplicar as raizes enésimas para encontrar as
solucdes de p(x), mas podemos aplicar o método biquadrado e utilizar a igualdade y = x?, logo p(x) =
p(y) = y? + y + 1, e temos, enfim, um polindmio de segundo grau que nos da duas solugdes para y, sdo
elas:

—-1+iV3 -1-iv/3
V= ey, =—— (22)

2 2

Poderiamos voltar ao valor de y e encontrar os quatro valores de x, contudo, se observarmos que y; =
w3 (raiz tripla da unidade) teremos um resultado interessante: temos que w € a raiz tripla primitiva da unidade,
isto é, w3 = 1 e, a0 mesmo tempo, € raiz de p(y), ou seja, p(w) = w?+ w + 1 = 0. As raizes de p(x) sdo

+w e +w?. Isto é facil de se verificar: (zw)* + (Fw)*+ 1 = w + w?> + 1 = 0 e (xwd)*+
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(zw?)?+ 1 = w? + w + 1 = 0. Com este exemplo, podemos ver que as raizes enésimas podem auxiliar-
nos na solucdo de polindmios que vao além dos polinémios da forma p(x) = x™ — a e também mostra um
pouco da importancia das raizes enésimas para o estudo de polinémios. Em Algebra, no estudo da Teoria de
Galois, elas também desempenham, um papel de grande importéncia, principalmente ao relacionarmos elas

com a func¢do ¢ de Euler.

4 CONCLUSAO

O estudo dos polindmios ocupa posicdo de destaque na Matematica escolar e universitaria, tanto por sua
relevancia tedrica quanto por seu papel formativo no desenvolvimento do pensamento algébrico. Entre os
diversos resultados associados a esse tema, 0 Teorema Fundamental da Algebra estabelece que todo polindémio
de grau nadmite exatamente nraizes complexas, contadas com suas multiplicidades. No caso particular dos
polindmios da forma x™ = z, o0 estudo das raizes enésimas permite ilustrar de maneira explicita esse resultado
evidenciando que tais polindmios possuem nraizes distintas, fato que decorre diretamente da expressao obtidg
a partir da Férmula de Moivre.

A deducdo da formula das raizes enésimas ndo apenas fornece um método algébrico para a determinacéo
dessas raizes, mas também possibilita uma interpretacdo geométrica clara no plano complexo. As raizes
enésimas de um nimero complexo sdo representadas como os veértices de um poligono regular de n lados
inscrito em uma circunferéncia, o que evidencia propriedades como a igualdade das distancias entre raizes
consecutivas e a distribuicdo simétrica dessas solucdes. Essa interpretacdo contribui significativamente para a
compreensdo conceitual das solucdes complexas de equacgdes polinomiais, frequentemente percebidas como
abstratas pelos estudantes.

Ao considerar as raizes da unidade e, de forma mais especifica, as raizes enésimas primitivas da unidade,
ampliam-se as possibilidades de aplicacdo desse estudo, tanto no contexto dos polinémios quanto em areas mais
avancadas da Matematica, como a Algebra Abstrata e a Teoria de Galois. A caracterizacao das raizes primitivas,
associada a coprimalidade entre os inteiros envolvidos, permite estabelecer conexdes com a funcéo ¢ de Euler
e com os polindmios ciclotbmicos, enriquecendo o panorama conceitual apresentado.

Do ponto de vista didatico, os exemplos discutidos ao longo do trabalho mostram que o estudo das raizes
enésimas pode ser utilizado ndo apenas para resolver polinémios da forma x™ = z, mas também como
ferramenta auxiliar na analise de equacdes polinomiais mais gerais. Ainda que, em determinados casos, outros
métodos sejam mais eficientes para a obtencéo das raizes, a abordagem por meio das raizes enésimas destaca-
se por seu potencial formativo, ao articular &lgebra, geometria e visualizagdo no plano complexo.

Diante do exposto, conclui-se que o estudo das raizes enésimas constitui uma ponte natural entre
conteudos tradicionalmente apresentados de forma fragmentada no Ensino Médio, favorecendo uma

compreensdo mais integrada dos polinémios e dos nameros complexos. Ao explorar simultaneamente aspectos
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algébricos e geométricos, essa abordagem contribui para tornar o ensino de polinémios mais intuitivo, visual e
conceitualmente consistente, além de oferecer ao professor um recurso didatico valioso para enriquecer praticas

pedagdgicas e estimular investigacbes matematicas em sala de aula.
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